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COHOMOLOGY JUMP LOCI SUPPORT VARIETIES

SUPPORT VARIETIES

Let k be an algebraically closed field.

Let S be a commutative, finitely generated k-algebra.

Let mSpec(S) = Homk-alg(S,k) be the maximal spectrum of S.

Let E : ¨ ¨ ¨ // Ei
di // Ei´1 // ¨ ¨ ¨ // E0 // 0 be an S-chain complex.

The support varieties of E are the subsets of mSpec(S) given by

W i
s(E) = supp

( s
ľ

Hi(E)
)
.

They depend only on the chain-homotopy equivalence class of E .

For each i ě 0, mSpec(S) = W i
0(E) ĚW i

1(E) ĚW i
2(E) Ě ¨ ¨ ¨ .

If all Ei are finitely generated S-modules, then the sets W i
s(E) are

Zariski closed subsets of mSpec(S).
ALEX SUCIU (NORTHEASTERN) COHOMOLOGY JUMP LOCI UCB TOPOLOGY SEMINAR 2 / 22



COHOMOLOGY JUMP LOCI HOMOLOGY JUMP LOCI

HOMOLOGY JUMP LOCI

The homology jump loci of the S-chain complex E are defined as

V i
s(E) = tm P mSpec(S) | dimk Hi(E bS S/m) ě su.

They depend only on the chain-homotopy equivalence class of E .

For each i ě 0, mSpec(S) = V i
0(E) Ě V i

1(E) Ě V i
2(E) Ě ¨ ¨ ¨ .

(Papadima–S. 2014) Suppose E is a chain complex of free, finitely
generated S-modules. Then:

Each V i
d (E) is a Zariski closed subset of mSpec(S).

For each q,
ď

iďq

V i
1(E) =

ď

iďq

W i
1(E).
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

RESONANCE VARIETIES

Let A =
À

iě0 Ai be a commutative graded k-algebra, with A0 = k.

Let a P A1, and assume a2 = 0 (this condition is redundant if
char(k) ‰ 2, by graded-commutativity of the multiplication in A).

Consider the cochain complex of k-vector spaces,

(A, δa) : A0 a // A1 a // A2 a // ¨ ¨ ¨ ,

with differentials given by b ÞÑ a ¨ b, for b P Ai .

The resonance varieties of A are the sets

Ri
s(A) = ta P A1 | a2 = 0 and dimk H i(A,a) ě su.

If A is locally finite (i.e., dimk Ai ă 8, for all i ě 1), then the sets
Ri

s(A) are Zariski closed cones inside the affine space A1.
ALEX SUCIU (NORTHEASTERN) COHOMOLOGY JUMP LOCI UCB TOPOLOGY SEMINAR 4 / 22



COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

Fix a k-basis te1, . . . ,enu for A1, and let tx1, . . . , xnu be the dual
basis for A1 = (A1)_.

Identify Sym(A1) with S = k[x1, . . . , xn], the coordinate ring of the
affine space A1.

Define a cochain complex of free S-modules, K (A) := (A‚ bS, δ),

¨ ¨ ¨ // Ai bk S δi
// Ai+1 bk S δi+1

// Ai+2 bk S // ¨ ¨ ¨ ,

where δi(u b s) =
řn

j=1 eju b sxj .

The specialization of (AbS, δ) at a P A1 coincides with (A, δa).

The cohomology support loci R i
s(A) = supp(

Źs H i(K (A))) are
(closed) subvarieties of A1.

Both Ri
s(A) and R i

s(A) can be arbitrarily complicated
(homogeneous) affine varieties.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

EXAMPLE (EXTERIOR ALGEBRA)

Let E =
Ź

V , where V = kn, and S = Sym(V ). Then K (E) is the
Koszul complex on V . E.g., for n = 3:

S

( x1
x2
x3

)
// S3

( x2 x3 0
´x1 0 x3

0 ´x1 ´x2

)
// S3 ( x3 ´x2 x1 ) // S .

This chain complex provides a free resolution ε : K (E)Ñ k of the trivial
S-module k. Hence,

Ri
s(E) =

#

t0u if s ď (n
i ),

H otherwise.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

EXAMPLE (NON-ZERO RESONANCE)

Let A =
Ź

(e1,e2,e3)/xe1e2y, and set S = k[x1, x2, x3]. Then

K (A) : S

( x1
x2
x3

)
// S3

(
x3 0 ´x1
0 x3 ´x2

)
// S2 .

R1
s(A) =

$

&

%

tx3 = 0u if s = 1,
t0u if s = 2 or 3,
H if s ą 3.

EXAMPLE (NON-LINEAR RESONANCE)

Let A =
Ź

(e1, . . . ,e4)/xe1e3,e2e4,e1e2 + e3e4y. Then

K (A) : S

 x1
x2
x3
x4


// S4

(
x4 0 0 ´x1
0 x3 ´x2 0
´x2 x1 x4 ´x3

)
// S3 .

R1
1(A) = tx1x2 + x3x4 = 0u
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CHARACTERISTIC VARIETIES

Let X be a connected, finite-type CW-complex.

Fundamental group π = π1(X , x0): a finitely generated, discrete
group, with πab – H1(X ,Z).

Fix a field k with k = k (usually k = C), and let S = k[πab].

Identify mSpec(S) with the character group
Char(X ) = Hom(π, k˚), also denoted pπ = yπab.

The characteristic varieties of X are the homology jump loci of
free S-chain complex E = C˚(X ab,k):

V i
s(X , k) = tρ P Char(X ) | dimk Hi(X ,kρ) ě su.

Each set V i
s(X ,k) is a subvariety of Char(X ).
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THE TANGENT CONE THEOREM CHARACTERISTIC VARIETIES

EXAMPLE (CIRCLE)

Let X = S1. We have (S1)ab = R. Identify π1(S1, ˚) = Z = xty and
ZZ = Z[t˘1]. Then:

C˚((S1)ab) : 0 // Z[t˘1]
t´1 // Z[t˘1] // 0

For each ρ P Hom(Z, k˚) = k˚, get a chain complex

C˚(ĂS1)bZZ kρ : 0 // k
ρ´1 // k // 0

which is exact, except for ρ = 1, when H0(S1,k) = H1(S1, k) = k.
Hence:

V0
1 (S

1) = V1
1 (S

1) = t1u

and V i
s(S1) = H, otherwise.
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THE TANGENT CONE THEOREM CHARACTERISTIC VARIETIES

EXAMPLE (TORUS)

Identify π1(T n) = Zn, and Hom(Zn,k˚) = (k˚)n. Then:

V i
s(T

n) =

"

t1u if s ď (n
i ),

H otherwise.

EXAMPLE (WEDGE OF CIRCLES)

Identify π1(
Žn S1) = Fn, and Hom(Fn, k˚) = (k˚)n. Then:

V1
s
( n
ł

S1) =
$

&

%

(k˚)n if s ă n,
t1u if s = n,
H if s ą n.

EXAMPLE (ORIENTABLE SURFACE OF GENUS g ą 1)

V1
s (Σg) =

$

&

%

(k˚)2g if s ă 2g ´ 1,
t1u if s = 2g ´ 1,2g,
H if s ą 2g.
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THE TANGENT CONE THEOREM CHARACTERISTIC VARIETIES

Homotopy invariance: If X » Y , then V i
s(Y , k) – V i

s(X ,k).

Product formula:
V i

1(X1 ˆX2, k) =
Ť

p+q=i V
p
1 (X1,k)ˆ Vq

1 (X2,k).

Degree 1 interpretation: The sets V1
s (X ,k) depend only on

π = π1(X )—in fact, only on π/π2. Write them as V1
s (π,k).

Functoriality: If ϕ : π � G is an epimorphism, then ϕ̂ : pG ãÑ pπ
restricts to an embedding V1

s (G, k) ãÑ V1
s (π,k), for each s.

Universality: Given any subvariety W Ă (k˚)n defined over Z,
there is a finitely presented group π such that πab = Zn and
V1

1 (π, k) = W .

Alexander invariant interpretation: Let X ab Ñ X be the maximal
abelian cover. View H˚(X ab,k) as a module over S = k[πab].
Then:

ď

jďi

V j
1(X , k) = supp

(
à

jďi
Hj
(
X ab,k

))
.
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THE TANGENT CONE THEOREM THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

The resonance varieties of X (with coefficients in k) are the loci
Ri

d (X , k) associated to the cohomology algebra A = H˚(X ,k).

Each set Ri
s(X ) := Ri

s(X ,C) is a homogeneous subvariety of
H1(X ,C) – Cn, where n = b1(X ).

Recall that V i
s(X ) := V i

s(X ,C) is a subvariety of
H1(X ,C˚) – (C˚)n ˆTors(H1(X ,Z)).

(Libgober 2002) TC1(V i
s(X )) Ď Ri

s(X ).

Given a subvariety W Ă H1(X ,C˚), let
τ1(W ) = tz P H1(X ,C) | exp(λz) P W , @λ P Cu.

(Dimca–Papadima–S. 2009) τ1(W ) is a finite union of rationally
defined linear subspaces, and τ1(W ) Ď TC1(W ).

Thus, τ1(V i
s(X )) Ď TC1(V i

s(X )) Ď Ri
s(X ).
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THE TANGENT CONE THEOREM FORMALITY

FORMALITY

X is formal if there is a zig-zag of cdga quasi-isomorphisms from
(APL(X ,Q),d) to (H˚(X ,Q),0).

X is k-formal (for some k ě 1) if each of these morphisms induces
an iso in degrees up to k , and a monomorphism in degree k + 1.

X is 1-formal if and only if π = π1(X ) is 1-formal, i.e., its Malcev
Lie algebra, m(π) = Prim(yQπ), is quadratic.

For instance, compact Kähler manifolds and complements of
hyperplane arrangements are formal.

(Dimca–Papadima–S. 2009) Let X be a 1-formal space. Then, for
each s ą 0,

τ1(V1
s (X )) = TC1(V1

s (X )) = R1
s(X ).

Consequently, R1
s(X ) is a finite union of rationally defined linear

subspaces in H1(X ,C).
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THE TANGENT CONE THEOREM FORMALITY

This theorem yields a very efficient formality test.

EXAMPLE

Let π = xx1, x2, x3, x4 | [x1, x2], [x1, x4][x´2
2 , x3], [x´1

1 , x3][x2, x4]y. Then
R1

1(π) = tx P C4 | x2
1 ´ 2x2

2 = 0u splits into linear subspaces over R

but not over Q. Thus, π is not 1-formal.

EXAMPLE

Let F (Σg ,n)be the configuration space of n labeled points of a
Riemann surface of genus g (a smooth, quasi-projective variety).

Then π1(F (Σg ,n)) = Pg,n, the pure braid group on n strings on Σg .
Compute:

R1
1(P1,n) =

"

(x , y) P Cn ˆCn
ˇ

ˇ

ˇ

ˇ

řn
i=1 xi =

řn
i=1 yi = 0,

xiyj ´ xjyi = 0, for 1 ď i ă j ă n

*

For n ě 3, this is an irreducible, non-linear variety (a rational normal
scroll). Hence, P1,n is not 1-formal.
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APPLICATIONS

APPLICATIONS OF COHOMOLOGY JUMP LOCI

Obstructions to formality and (quasi-) projectivity
Right-angled Artin groups and Bestvina–Brady groups
3-manifold groups, Kähler groups, and quasi-projective groups

Homology of finite, regular abelian covers
Homology of the Milnor fiber of an arrangement
Rational homology of smooth, real toric varieties

Homological and geometric finiteness of regular abelian covers
Bieri–Neumann–Strebel–Renz invariants
Dwyer–Fried invariants

Resonance varieties and representations of Lie algebras
Homological finiteness in the Johnson filtration of automorphism
groups

Lower central series and Chen Lie algebras
The resonance–Chen ranks formula
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APPLICATIONS SMOOTH, QUASI-PROJECTIVE VARIETIES

QUASI-PROJECTIVE VARIETIES

THEOREM (ARAPURA 1997, . . . , BUDUR–WANG 2015)

Let X be a smooth, quasi-projective variety. Then each V i
s(X ) is a

finite union of torsion-translated subtori of Char(X ).

THEOREM (DIMCA–PAPADIMA–S. 2009)

Let X be a smooth, quasi-projective variety. If X is 1-formal, then the
(non-zero) irreducible components of R1

1(X ) are linear subspaces of
H1(X ,C) which intersect pairwise only at 0. Each such component Lα

is p-isotropic (i.e., the restriction of YX to Lα has rank p), with
dimLα ě 2p + 2, for some p = p(α) P t0,1u, and

R1
s(X ) = t0u Y

ď

α:dimLαąs+p(α)

Lα.

‚ If X is compact, then X is 1-formal, and each Lα is 1-isotropic.
‚ If W1(H1(X ,C)) = 0, then X is 1-formal, and each Lα is 0-isotropic.
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APPLICATIONS KÄHLER GROUPS AND 3-MANIFOLDS GROUPS

KÄHLER GROUPS AND 3-MANIFOLDS GROUPS

QUESTION (DONALDSON–GOLDMAN 1989)

Which 3-manifold groups are Kähler groups?

Reznikov gave a partial solution in 2002.

THEOREM (DIMCA–S. 2009)

Let G be the fundamental group of a closed 3-manifold. Then G is a
Kähler group ðñ G is a finite subgroup of O(4), acting freely on S3.

Alternative proofs: Kotschick (2012), Biswas, Mj, and Seshadri (2012).

THEOREM (FRIEDL–S. 2014)

Let N be a 3-manifold with non-empty, toroidal boundary. If π1(N) is a
Kähler group, then N – S1 ˆS1 ˆ I.

Generalization by Kotschick: If π1(N) is an infinite Kähler group, then
π1(N) is a surface group.
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APPLICATIONS KÄHLER GROUPS AND 3-MANIFOLDS GROUPS

Idea of proof of [DS09]:

PROPOSITION

Let M be a closed, orientable 3-manifold. Then:

H1(M,C) is not 1-isotropic.

If b1(M) is even, then R1
1(M) = H1(M,C).

On the other hand, it follows from [DPS 2009] that:

PROPOSITION

Let M be a compact Kähler manifold with b1(M) ‰ 0. If
R1

1(M) = H1(M,C), then H1(M,C) is 1-isotropic.

But G = π1(M), with M Kähler ñ b1(G) even.
Thus, if G is both a 3-mfd group and a Kähler group ñ b1(G) = 0.
Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan’s
property (T), as well as Perelman (2003) ñ G finite subgroup of O(4).
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APPLICATIONS TORIC COMPLEXES

TORIC COMPLEXES AND RAAGS

Let L be a simplicial complex on n vertices.

The toric complex TL is the subcomplex of T n obtained by deleting
the cells corresponding to the missing simplices of L. That is:

S1 = e0 Y e1.
T n = (S1)ˆn, with product cell structure:

(k ´ 1)-simplex σ = ti1, . . . , iku  k -cell eσ = e1
i1 ˆ ¨ ¨ ¨ ˆ e1

ik

TL =
Ť

σPL eσ.

Examples:
TH = ˚

Tn points =
Žn S1

TB∆n´1 = (n´ 1)-skeleton of T n

T∆n´1 = T n
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APPLICATIONS TORIC COMPLEXES

π1(TL) is the right-angled Artin group associated to the graph
Γ = L(1):

GL = GΓ = xv P V (Γ) | vw = wv if tv ,wu P E(Γ)y.

If Γ = K n then GΓ = Fn, while if Γ = Kn, then GΓ = Zn.

If Γ = Γ1
š

Γ2, then GΓ = GΓ1 ˚GΓ2 .

If Γ = Γ1 ˚ Γ2, then GΓ = GΓ1 ˆGΓ2 .

K (GΓ,1) = T∆Γ , where ∆Γ is the flag complex of Γ.
(Davis–Charney 1995, Meier–VanWyk 1995)

H˚(TL,Z) is the exterior Stanley-Reisner ring of L, with
generators the duals v˚, and relations the monomials
corresponding to the missing simplices of L.

If H˚(TK ,Z) – H˚(TL,Z), then K – L. (Stretch 2017)

TL is formal, and so GL is 1-formal. (Notbohm–Ray 2005)
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APPLICATIONS TORIC COMPLEXES

Identify H1(TL,C) = CV, the C-vector space with basis tv | v P Vu.

THEOREM (PAPADIMA–S. 2010)

Ri
s(TL,k) =

ď

WĂV
ř

σPLVzW
dimk rHi´1´|σ|(lkLW

(σ),k)ěs

CW,

where LW is the subcomplex induced by L on W, and lkK (σ) is the link
of a simplex σ in a subcomplex K Ď L.

In particular (PS06):

R1
1(GΓ,k) =

ď

WĎV
ΓW disconnected

kW.

Similar formula holds for V i
s(TL, k), with kW replaced by (k˚)W.
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APPLICATIONS TORIC COMPLEXES

EXAMPLE

Γ =
1 2 3 4

Maximal disconnected subgraphs: Γt134u and Γt124u. Thus:

R1(GΓ) = Ct134u YCt124u.

Note that: Ct134u XCt124u = Ct14u ‰ t0u Since GΓ is 1-formal, GΓ is not
a quasi-projective group.

THEOREM (DPS09)

The following are equivalent:

1 GΓ is a quasi-projective group
2 Γ = Kn1,...,nr := K n1 ˚ ¨ ¨ ¨ ˚K nr

3 GΓ = Fn1 ˆ ¨ ¨ ¨ ˆ Fnr

1 GΓ is a Kähler group
2 Γ = K2r

3 GΓ = Z2r
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