Sigma-invariants and tropical varieties

Alex Suciu

Northeastern University, Boston

Conference on Finiteness Conditions in Topology and Algebra

Queen's University Belfast

September 1, 2015

OUTLINE

- **1** FINITENESS PROPERTIES OF ABELIAN COVERS
 - The Bieri–Neumann–Strebel–Renz invariants
 - The Dwyer–Fried invariants

CHARACTERISTIC VARIETIES AND FINITENESS PROPERTIES

- Jump loci and exponential tangent cones
- Resonance varieties
- Bounding the Σ-invariants
- A formula and a bound for the Ω-invariants
- Comparing the Σ and Ω -bounds

TROPICAL BOUNDS

- Tropical geometry
- Tropicalizing the characteristic varieties

APPLICATIONS

- Toric complexes and right-angled Artin groups
- Hyperplane arrangements
- Kähler manifolds

THE BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

- Let π be a finitely generated group, n = b₁(π) > 0. Let S(π) be the unit sphere in Hom(π, ℝ) = ℝⁿ.
- The BNSR-invariants of π form a descending chain of open subsets, S(π) ⊇ Σ¹(π, ℤ) ⊇ Σ²(π, ℤ) ⊇ ···.
- $\Sigma^{k}(\pi, \mathbb{Z})$ consists of all $\chi \in S(\pi)$ for which the monoid $\pi_{\chi} = \{g \in \pi \mid \chi(g) \ge 0\}$ is of type FP_k, i.e., there is a projective $\mathbb{Z}\pi$ -resolution $P_{\bullet} \to \mathbb{Z}$, with P_{i} finitely generated for all $i \le k$.
- The Σ-invariants control the finiteness properties of normal subgroups N ⊲ π for which π/N is free abelian:

N is of type $\mathsf{FP}_k \iff S(\pi, N) \subseteq \Sigma^k(\pi, \mathbb{Z})$

where $S(\pi, N) = \{\chi \in S(\pi) \mid \chi(N) = 0\}.$

• In particular: ker($\chi : \pi \twoheadrightarrow \mathbb{Z}$) is f.g. $\iff \{\pm \chi\} \subseteq \Sigma^1(\pi, \mathbb{Z})$.

- More generally, let X be a connected CW-complex with finite k-skeleton, for some k ≥ 1.
- Let $\pi = \pi_1(X, x_0)$. For each $\chi \in S(X) := S(\pi)$, set

 $\widehat{\mathbb{Z}\pi}_{\chi} = \{\lambda \in \mathbb{Z}^{\pi} \mid \{ g \in \text{supp } \lambda \mid \chi(g) < c \} \text{ is finite, } \forall c \in \mathbb{R} \}$

be the Novikov–Sikorav completion of $\mathbb{Z}\pi$.

• Following Farber, Geoghegan, and Schütz (2010), define

 $\Sigma^{q}(X,\mathbb{Z}) = \{\chi \in \mathcal{S}(X) \mid H_{i}(X,\widehat{\mathbb{Z}\pi}_{-\chi}) = 0, \forall i \leq q\}.$

- (Bieri) If π is FP_k, then $\Sigma^q(\pi, \mathbb{Z}) = \Sigma^q(K(\pi, 1), \mathbb{Z}), \forall q \leq k$.
- The sphere S(π) parametrizes all regular, free abelian covers of X. The Σ-invariants of X keep track of the geometric finiteness properties of these covers.

THE DWYER–FRIED INVARIANTS

- Now fix the rank r of the deck-transformation group.
- Regular \mathbb{Z}^r -covers of X are classified by epimorphisms $\nu \colon \pi \twoheadrightarrow \mathbb{Z}^r$.
- Such covers are parameterized by the Grassmannian $\operatorname{Gr}_r(\mathbb{Q}^n)$, where $n = b_1(X)$, via the correspondence

 $\{ \text{regular } \mathbb{Z}^r \text{-covers of } X \} \longleftrightarrow \{ r \text{-planes in } H^1(X, \mathbb{Q}) \}$ $X^{\nu} \to X \iff P_{\nu} := \text{im}(\nu^* \colon \mathbb{Q}^r \to H^1(X, \mathbb{Q}))$

The Dwyer–Fried invariants of X are the subsets
 Ωⁱ_r(X) = {P_ν ∈ Gr_r(ℚⁿ) | b_j(X^ν) < ∞ for j ≤ i}.

• For each r > 0, we get a descending filtration,

 $\operatorname{Gr}_r(\mathbb{Q}^n) = \Omega^0_r(X) \supseteq \Omega^1_r(X) \supseteq \Omega^2_r(X) \supseteq \cdots$

CHARACTERISTIC VARIETIES

- Let $\widehat{\pi} = \text{Hom}(\pi, \mathbb{C}^*) = H^1(X, \mathbb{C}^*)$ be the character group of $\pi = \pi_1(X)$.
- The *characteristic varieties* of *X* are the sets

 $\mathcal{V}^{i}(\boldsymbol{X}) = \{ \rho \in \widehat{\pi} \mid H_{i}(\boldsymbol{X}, \mathbb{C}_{\rho}) \neq \boldsymbol{0} \}.$

- If X has finite k-skeleton, then Vⁱ(X) is a Zariski closed subset of the algebraic group π̂, for each i ≤ k.
- Let X^{ab} → X be the maximal abelian cover. View H_{*}(X^{ab}, C) as a module over C[π_{ab}]. Then

$$\bigcup_{i\leq j}\mathcal{V}^{i}(X)=\bigcup_{i\leq j}V(\operatorname{ann}\left(H_{i}(X^{\operatorname{ab}},\mathbb{C})\right)).$$

• Moreover, $\mathcal{V}^1(X) \cap \widehat{\pi}^0 = \{1\} \cup V(\Delta_{\pi})$, where Δ_{π} is the Alexander polynomial of π .

PROPAGATION OF JUMP LOCI

- Bieri–Eckmann (1973): X is a *duality space* of dimension d if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq d$, while $H^d(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- We say X is an *abelian duality space* of dimension d if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq d$, while $H^d(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^d(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.

THEOREM (DENHAM–S.–YUZVINSKY 2015)

Let X be an abelian duality space of dimension d. If $\rho : \pi_1(X) \to \mathbb{C}^*$ satisfies $H^i(X, \mathbb{C}_{\rho}) \neq 0$, then $H^j(X, \mathbb{C}_{\rho}) \neq 0$, for all $i \leq j \leq d$. Consequently,

- The characteristic varieties propagate, i.e., $\mathcal{V}^1(X) \subseteq \cdots \subseteq \mathcal{V}^d(X)$.
- dim $H^1(X,\mathbb{C}) \ge d-1$.
- If $d \ge 2$, then $H^i(X, \mathbb{C}) \neq 0$, for all $0 \le i \le d$.

EXPONENTIAL TANGENT CONES

- Let exp: H¹(X, C) → H¹(X, C*) be the coefficient homomorphism induced by C → C*, z ↦ e^z.
- Given a Zariski closed subset W ⊂ H¹(X, C*), define the exponential tangent cone of W at 1 as

 $\tau_1(W) = \{ z \in H^1(X, \mathbb{C}) \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}.$

- $\tau_1(W)$ is a finite union of rationally defined linear subspaces.
- $\tau_1(W)$ is non-empty iff $1 \in W$.
- For instance, if $T \cong (\mathbb{C}^*)^r$ is an algebraic subtorus, then $\tau_1(T) = T_1(T) \cong \mathbb{C}^r$.
- Set $\tau_1^{\Bbbk}(W) = \tau_1(W) \cap H^1(X, \Bbbk)$, for a subfield $\Bbbk \subset \mathbb{C}$.

RESONANCE VARIETIES

- Let $A = H^*(X, \mathbb{C})$. For each $a \in A^1$, we have that $a^2 = 0$. Thus, there is a cochain complex $(A, \cdot a)$: $A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$.
- The resonance varieties of X are the homogeneous algebraic sets $\mathcal{R}^{i}(X) = \{a \in A^{1} \mid H^{i}(A, a) \neq 0\}.$

THEOREM (LIBGOBER 2002, DIMCA–PAPADIMA–S. 2009) $\tau_1(\mathcal{V}^i(X)) \subseteq \mathsf{TC}_1(\mathcal{V}^i(X)) \subseteq \mathcal{R}^i(X).$

THEOREM (DPS-2009, DP-2014)

Suppose X is a q-formal space. Then, for all $i \leq q$,

$$\tau_1(\mathcal{V}^i(X)) = \mathsf{TC}_1(\mathcal{V}^i(X)) = \mathcal{R}^i(X).$$

BOUNDING THE Σ -INVARIANTS

- Let $\chi \in S(X)$, and set $\Gamma = im(\chi)$; then $\Gamma \cong \mathbb{Z}^r$, for some $r \ge 1$.
- A Laurent polynomial $p = \sum_{\gamma} n_{\gamma} \gamma \in \mathbb{Z}\Gamma$ is χ -monic if the greatest element in $\chi(\operatorname{supp}(p))$ is 0, and $n_0 = 1$.
- Let *R*Γ_χ be the Novikov ring, i.e., the localization of ZΓ at the multiplicative subset of all χ-monic polynomials (it's a PID).
- Let $b_i(X, \chi) = \operatorname{rank}_{\mathcal{R}\Gamma_{\chi}} H_i(X, \mathcal{R}\Gamma_{\chi})$ be the Novikov–Betti numbers.

THEOREM (PAPADIMA-S. 2010)

• $-\chi \in \Sigma^k(X,\mathbb{Z}) \implies b_i(X,\chi) = 0, \forall i \leq k.$

• $\chi \notin \tau_1^{\mathbb{R}}(\bigcup_{q \leq i} \mathcal{V}^q(X))) \iff b_i(X, \chi) = 0, \forall i \leq k.$

Hence, $\Sigma^{i}(X,\mathbb{Z}) \subseteq S(X) \setminus S(\tau_{1}^{\mathbb{R}}(\bigcup_{q \leq i} \mathcal{V}^{q}(X))).$

Thus, $\Sigma^{i}(X, \mathbb{Z})$ is contained in the complement of a finite union of rationally defined great subspheres.

ALEX SUCIU

Σ-INVARIANTS AND TROPICAL VARIETIES

A formula and a bound for the Ω -invariants

THEOREM (DWYER-FRIED 1987, PAPADIMA-S. 2010)

For an epimorphism $\nu : \pi_1(X) \twoheadrightarrow \mathbb{Z}^r$, the following are equivalent:

- The vector space $\bigoplus_{i=0}^{k} H_i(X^{\nu}, \mathbb{C})$ is finite-dimensional.

Note that $\exp(P_{\nu} \otimes \mathbb{C}) = \mathbb{T}_{\nu}$. Thus:

COROLLARY

 $\Omega^i_r(X) = \left\{ P \in \mathrm{Gr}_r(H^1(X,\mathbb{Q})) \mid \dim\left(\exp(P \otimes \mathbb{C}) \cap \mathcal{W}^i(X)\right) = \mathbf{0} \right\}$

COROLLARY

- If $\mathcal{W}^{i}(X)$ is finite, then $\Omega_{r}^{i}(X) = \operatorname{Gr}_{r}(\mathbb{Q}^{n})$, where $n = b_{1}(X)$.
- If $\mathcal{W}^{i}(X)$ is infinite, then $\Omega_{n}^{q}(X) = \emptyset$, for all $q \geq i$.

- Let *V* be a homogeneous variety in \mathbb{k}^n . The set $\sigma_r(V) = \{P \in \operatorname{Gr}_r(\mathbb{k}^n) \mid P \cap V \neq \{0\}\}$ is Zariski closed.
- If L ⊂ kⁿ is a linear subspace, σ_r(L) is the special Schubert variety defined by L. If codim L = d, then codim σ_r(L) = d − r + 1.

THEOREM

$$\Omega^i_r(X)\subseteq {
m Gr}_r(H^1(X,{\mathbb Q}))\setminus \sigma_rig(au^{\mathbb Q}_1({\mathcal W}^i(X))ig)$$

- Thus, each set Ωⁱ_r(X) is contained in the complement of a finite union of special Schubert varieties.
- If r = 1, the inclusion always holds as an equality. In general, though, the inclusion is strict.

EXAMPLE

Let $\pi = \langle x_1, x_2, x_3 | [x_1^2, x_2], [x_1, x_3], x_1[x_2, x_3]x_1^{-1}[x_2, x_3] \rangle$. Then $\mathcal{V}^1(\pi) = \{1\} \cup \{t \in (\mathbb{C}^*)^3 | t_1 = -1\}.$ Thus, $\Omega_2^1(\pi)$ is a single point in $\operatorname{Gr}_2(\mathcal{H}^1(G, \mathbb{Q})) = \mathbb{QP}^2$, hence *not* open.

12 / 25

Comparing the Σ - and Ω -bounds

THEOREM

Suppose that $\Sigma^{i}(X,\mathbb{Z}) = S(X) \setminus S(\tau_{1}^{\mathbb{R}}(\mathcal{W}^{i}(X))).$

Then $\Omega_r^i(X) = \operatorname{Gr}_r(H^1(X, \mathbb{Q})) \setminus \sigma_r(\tau_1^{\mathbb{Q}}(\mathcal{W}^i(X)))$, for all $r \ge 1$.

COROLLARY

Suppose there is an integer $r \ge 2$ such that $\Omega_r^i(X)$ is not Zariski open. Then $\Sigma^i(X, \mathbb{Z}) \neq S(\tau_1^{\mathbb{R}}(\mathcal{W}^i(X)))^{c}$.

In general, the implication from the theorem cannot be reversed.

EXAMPLE

Let $\pi = BS(1, 2) = \langle x_1, x_2 | x_1 x_2 x_1^{-1} = x_2^2 \rangle$. Then $\mathcal{V}^1(\pi) = \{1, 2\} \subset \mathbb{C}^*$. Thus, $\Omega_1^1(\pi) = \{\text{pt}\}$, and so $\Omega_1^1(\pi) = \sigma_1(\tau_1^{\mathbb{Q}}(\mathcal{V}^1(\pi)))^{\mathfrak{c}}$. On the other hand, $\Sigma^1(\pi) = \{-1\}$, whereas $S(\tau_1^{\mathbb{Q}}(\mathcal{V}^1(\pi)))^{\mathfrak{c}} = \{\pm 1\}$.

TROPICAL GEOMETRY

- Let $\mathbb{K} = \mathbb{C}\{\{t\}\}\$ be the field of Puiseux series over \mathbb{C} .
- A non-zero element of \mathbb{K} has the form $c(t) = c_1 t^{a_1} + c_2 t^{a_2} + \cdots$, where $c_i \in \mathbb{C}^*$ and $a_1 < a_2 < \cdots$ are rational numbers with a common denominator.
- The (algebraically closed) field K admits a discrete valuation
 v: K^{*} → Q, given by *v*(*c*(*t*)) = *a*₁.
- Let $v : (\mathbb{K}^*)^n \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the *n*-fold product of the valuation.
- The tropicalization of a variety W ⊂ (K*)ⁿ, denoted Trop(W), is the closure of the set v(W) in Rⁿ.
- This is a rational polyhedral complex in ℝⁿ. For instance, if *W* is a curve, then Trop(*W*) is a graph with rational edge directions.

- If *T* be an algebraic subtorus of (K^{*})ⁿ, then Trop(*T*) is the linear subspace Hom(K^{*}, *T*) ⊗ R ⊂ Hom(K^{*}, (K^{*})ⁿ) ⊗ R = Rⁿ.
- Moreover, if $z \in (\mathbb{K}^*)^n$, then $\operatorname{Trop}(z \cdot T) = \operatorname{Trop}(T) + v(z)$.
- For a variety W ⊂ (C*)ⁿ, we may define its tropicalization by setting Trop(W) = Trop(W ×_C K).
- In this case, the tropicalization is a polyhedral fan in \mathbb{R}^n .
- For instance, if W = V(f) is a hypersurface, defined by a Laurent polynomial $f \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$, then $\operatorname{Trop}(W)$ is the positive codimension- skeleton of the inner normal fan to the Newton polytope of f.

LEMMA

Let $W \subset (\mathbb{C}^*)^n$ be an algebraic variety. Then $\tau_1^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.

TROPICALIZING THE CHARACTERISTIC VARIETIES

- Let X be a connected CW-complex w/ finite k-skeleton, $n = b_1(X)$.
- For each $q \leq k$, let $\mathcal{W}^q(X) = \bigcup_{i < q} \mathcal{V}^i(X) \cap H^1(X, \mathbb{C}^*)^0 \subset (\mathbb{C}^*)^n$.
- Let $\operatorname{Trop}(\mathcal{W}^q(X)) \subset \mathbb{R}^n$ be its tropicalization.

THEOREM

$$\Sigma^q(X,\mathbb{Z})\subseteq \mathcal{S}(X)\setminus \mathcal{S}(\operatorname{Trop}(\mathcal{W}^q(X))).$$

COROLLARY

Let π be a finitely generated group, and let Δ_{π} be its Alexander polynomial. Then:

$$\Sigma^{1}(\pi) \subseteq S(\pi) \setminus S(\operatorname{Trop}(V(\Delta_{\pi}))).$$

EXAMPLE

- Let $\pi = \langle a, b \mid a^{-1}b^2ab^{-2} = aba^{-1}b^{-1} \rangle$.
- By Brown's algorithm, $\Sigma^{1}(\pi, \mathbb{Z}) = S^{1} \setminus \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (0, -1), (-1, 0)\}.$
- On the other hand, $\Delta_{\pi} = 1 + b a$.
- Thus, $\Sigma^1(G) = S(\operatorname{Trop}(V(\Delta_{\pi})))^{\complement}$, although $\tau_1(\mathcal{V}^1(\pi)) = \{0\}$.

EXAMPLE

- Let $\pi = \langle a, b \mid a^2 b a^{-1} b a^2 b a^{-1} b^{-3} a^{-1} b a^2 b a^{-1} b a b^{-1} a^{-2} b^{-1} a b^{-1} a^{-2} b^{-1} a b^{-1} a^{-1} b^{-1} a^{-1} b \rangle$ (Dunfield's link group).
- Then Δ_π = (a − 1)(ab − 1), and so S(Trop(V(Δ_π))) consists of 4 points.
- Yet Σ¹(π, ℤ) consists of two open arcs joining those two pairs of points. Thus, the tropical bound is strict in this case.

TORIC COMPLEXES AND RAAGS

- Let *L* be a *d*-dimensional simplicial complex on vertex set V with |V| = n.
- The *toric complex T*_{*L*} is the subcomplex of *T*^{*n*} obtained by deleting the cells corresponding to the missing simplices of *L*.
- T_L is a connected CW-complex, of dimension d + 1. Moreover, T_L is formal.
- $\pi_{\Gamma} := \pi_1(T_L)$ is the *right-angled Artin group* associated to the graph $\Gamma = L^{(1)}$.
- $K(\pi_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ .
- *H*^{*}(*T_L*, ℤ) is the exterior Stanley-Reisner ring of *L*, with generators the duals *v*^{*}, and relations the monomials corresponding to the missing simplices of *L*.

L is *Cohen–Macaulay* if for each simplex $\sigma \in L$, the reduced cohomology of $lk(\sigma)$ is concentrated in degree $d - |\sigma|$ and is torsion-free.

THEOREM (N. BRADY-MEIER 2001, JENSEN-MEIER 2005)

A right-angled Artin group π_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay. Moreover, π_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

THEOREM (DSY 2015)

A toric complex T_L is an abelian duality space if and only if L is Cohen-Macaulay, in which case the characteristic varieties of T_L propagate.

BELFAST, SEPT. 1, 2015

21 / 25

- Identify $\widehat{\pi_{\Gamma}} = H^1(T_L, \mathbb{C}^*)$ with $(\mathbb{C}^*)^{\mathsf{V}} = (\mathbb{C}^*)^n$.
- Each subset $W \subseteq V$ yields an algebraic subtorus $(\mathbb{C}^*)^W \subset (\mathbb{C}^*)^V$.

THEOREM (PAPADIMA-S. 2009)

$$\mathcal{V}^{i}(T_{L}) = \bigcup_{W} (\mathbb{C}^{*})^{W}$$
 and $\mathcal{R}^{i}(T_{L}) = \bigcup_{W} \mathbb{C}^{W},$

where the union is taken over all $W \subseteq V$ for which there is a simplex $\sigma \in L_{V \setminus W}$ and an index $j \leq i$ such that $\widetilde{H}_{j-1-|\sigma|}(Ik_{L_W}(\sigma), \mathbb{C}) \neq 0$.

COROLLARY

$$\Omega_r^i(T_L) = \operatorname{Gr}_r(\mathbb{Q}^{\mathsf{V}}) \setminus \sigma_r(\mathcal{R}^i(T_L,\mathbb{Q})).$$

Using results of Meier-Meinert-VanWyk & Bux-Gonzalez, we get:

COROLLARY

$$\Sigma^{i}(\pi_{\Gamma},\mathbb{R})=\mathcal{S}(\mathcal{R}^{i}(\pi_{\Gamma},\mathbb{R}))^{c}.$$

ALEX SUCIU

Σ-INVARIANTS AND TROPICAL VARIETIES

HYPERPLANE ARRANGEMENTS

- Let A = {H₁,...H_n} be an (essential, central) arrangement of hyperplanes in C^d.
- Its complement, M(A) ⊂ (C*)ⁿ, is a Stein manifold, and thus has the homotopy type of *d*-dimensional CW-complex.
- $\operatorname{Trop}(M(\mathcal{A}))$ is the 'Bergman fan' of the underlying matroid of \mathcal{A} .

THEOREM (DAVIS–JANUSZKIEWICZ–OKUN (2011), DSY (2015)) Suppose $A = \mathbb{Z}[\pi]$ or $A = \mathbb{Z}[\pi_{ab}]$. Then $H^p(M(\mathcal{A}), A) = 0$ for all $p \neq d$, and $H^d(M(\mathcal{A}), A)$ is a free abelian group.

COROLLARY

- M(A) is a duality and an abelian duality space of dimension d.
- The characteristic varieties of M(A) propagate.

- The cohomology ring H^{*}(M(A), Z)) is the Orlik–Solomon algebra of the underlying matroid. Moreover, M(A) is formal.
- Work of Arapura, Falk, D.Cohen–A.S., Libgober–Yuzvinsky, and Falk–Yuzvinsky completely describes the resonance varieties $\mathcal{R}^1(\mathcal{A}) = \mathcal{R}^1(\mathcal{M}(\mathcal{A}), \mathbb{C})$:
 - $\mathcal{R}^1(\mathcal{A})$ is a union of linear subspaces in $H^1(\mathcal{M}(\mathcal{A}), \mathbb{C}) \cong \mathbb{C}^{|\mathcal{A}|}$.
 - Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
 - Each *k*-multinet on a sub-arrangement B ⊆ A gives rise to a component of R¹(A) of dimension k − 1. Moreover, all components of R¹(A) arise in this way.

QUESTION (S., AT OBERWOLFACH MINIWORKSHOP 2007)

Given an arrangement \mathcal{A} , do we have

$$\Sigma^{1}(M(\mathcal{A}),\mathbb{Z}) = \mathcal{S}(\mathcal{R}^{1}(M(\mathcal{A}),\mathbb{R}))^{\complement}?$$

EXAMPLE (KOBAN-MCCAMMOND-MEIER 2013)

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^n , defined by $\prod_{1 \le i < j \le n} (z_i z_j) = 0$. Then $M(\mathcal{A}) = \text{Conf}(n, \mathbb{C}) \simeq \mathcal{K}(P_n, 1)$.
- Answer to (⋆) is yes: Σ¹(*M*(*A*), ℤ) is the complement of the union of ⁽ⁿ⁾₃) + ⁽ⁿ⁾₄ planes in ℂ⁽ⁿ⁾₂, intersected with the unit sphere.

EXAMPLE (S.)

• Let A be the "deleted B₃" arrangement, defined by $z_1 z_2 (z_1^2 - z_2^2) (z_1^2 - z_2^2) (z_2^2 - z_3^2) = 0.$

• $\mathcal{R}^1(M(\mathcal{A}),\mathbb{R})) \subsetneq$ Trop $(\mathcal{V}^1(M(\mathcal{A}))$, and so the answer to (*) is no.

 (\star)

KÄHLER MANIFOLDS

THEOREM (DELZANT 2010, PAPADIMA-S. 2010)

Let *M* be a compact Kähler manifold with $b_1(M) > 0$. Then

 $\Sigma^1(M,\mathbb{Z}) = S(\mathcal{R}^1(M,\mathbb{R}))^{c}$

if and only if there is no pencil $f: M \to E$ onto an elliptic curve E such that f has multiple fibers.

THEOREM (S. 2013)

- If *M* admits an orbifold fibration with base genus $g \ge 2$, then $\Omega_r^1(M) = \emptyset$, for all $r > b_1(M) 2g$.
- Otherwise, $\Omega_r^1(M) = \operatorname{Gr}_r(H^1(M, \mathbb{Q}))$, for all $r \ge 1$.
- Suppose M admits an orbifold fibration with multiple fibers and base genus g = 1. Then Ω₂¹(M) is not an open subset of Gr₂(H¹(M, Q)).