Sigma-invariants and tropical varieties

Alex Suciu

Northeastern University, Boston

Conference on Finiteness Conditions in Topology and Algebra

Queen's University Belfast

September 1, 2015
(1) Finiteness properties of abelian covers

- The Bieri-Neumann-Strebel-Renz invariants
- The Dwyer-Fried invariants
(2) CHARACTERISTIC VARIETIES AND FINITENESS PROPERTIES
- Jump loci and exponential tangent cones
- Resonance varieties
- Bounding the Σ-invariants
- A formula and a bound for the Ω-invariants
- Comparing the Σ - and Ω-bounds
(3) Tropical bounds
- Tropical geometry
- Tropicalizing the characteristic varieties

4 Applications

- Toric complexes and right-angled Artin groups
- Hyperplane arrangements
- Kähler manifolds

The Bieri-Neumann-Strebel-Renz invariants

- Let π be a finitely generated group, $n=b_{1}(\pi)>0$. Let $S(\pi)$ be the unit sphere in $\operatorname{Hom}(\pi, \mathbb{R})=\mathbb{R}^{n}$.
- The BNSR-invariants of π form a descending chain of open subsets, $S(\pi) \supseteq \Sigma^{1}(\pi, \mathbb{Z}) \supseteq \Sigma^{2}(\pi, \mathbb{Z}) \supseteq \cdots$.
- $\Sigma^{k}(\pi, \mathbb{Z})$ consists of all $\chi \in S(\pi)$ for which the monoid $\pi_{\chi}=\{g \in \pi \mid \chi(g) \geq 0\}$ is of type FP_{k}, i.e., there is a projective $\mathbb{Z} \pi$-resolution $P_{\bullet} \rightarrow \mathbb{Z}$, with P_{i} finitely generated for all $i \leq k$.
- The Σ-invariants control the finiteness properties of normal subgroups $N \triangleleft \pi$ for which π / N is free abelian:

$$
N \text { is of type } \mathrm{FP}_{k} \Longleftrightarrow S(\pi, N) \subseteq \Sigma^{k}(\pi, \mathbb{Z})
$$

where $S(\pi, N)=\{\chi \in S(\pi) \mid \chi(N)=0\}$.

- In particular: $\operatorname{ker}(\chi: \pi \rightarrow \mathbb{Z})$ is f.g. $\Longleftrightarrow\{ \pm \chi\} \subseteq \Sigma^{1}(\pi, \mathbb{Z})$.
- More generally, let X be a connected CW-complex with finite k-skeleton, for some $k \geq 1$.
- Let $\pi=\pi_{1}\left(X, x_{0}\right)$. For each $\chi \in S(X):=S(\pi)$, set

$$
\widehat{\mathbb{Z}}_{\chi}=\left\{\lambda \in \mathbb{Z}^{\pi} \mid\{g \in \operatorname{supp} \lambda \mid \chi(g)<c\} \text { is finite, } \forall c \in \mathbb{R}\right\}
$$

be the Novikov-Sikorav completion of $\mathbb{Z} \pi$.

- Following Farber, Geoghegan, and Schütz (2010), define

$$
\Sigma^{q}(X, \mathbb{Z})=\left\{\chi \in S(X) \mid H_{i}\left(X, \widehat{\mathbb{Z}}{ }_{-\chi}\right)=0, \forall i \leq q\right\}
$$

- (Bieri) If π is FP_{k}, then $\Sigma^{q}(\pi, \mathbb{Z})=\Sigma^{q}(K(\pi, 1), \mathbb{Z}), \forall q \leq k$.
- The sphere $S(\pi)$ parametrizes all regular, free abelian covers of X. The \sum-invariants of X keep track of the geometric finiteness properties of these covers.

The Dwyer-Fried invariants

- Now fix the rank r of the deck-transformation group.
- Regular \mathbb{Z}^{r}-covers of X are classified by epimorphisms $\nu: \pi \rightarrow \mathbb{Z}^{r}$.
- Such covers are parameterized by the Grassmannian $\operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right)$, where $n=b_{1}(X)$, via the correspondence

$$
\begin{aligned}
\left\{\text { regular } \mathbb{Z}^{r} \text {-covers of } X\right\} & \longleftrightarrow\left\{r \text {-planes in } H^{1}(X, \mathbb{Q})\right\} \\
X^{\nu} \rightarrow X & \longleftrightarrow P_{\nu}:=\operatorname{im}\left(\nu^{*}: \mathbb{Q}^{r} \rightarrow H^{1}(X, \mathbb{Q})\right)
\end{aligned}
$$

- The Dwyer-Fried invariants of X are the subsets

$$
\Omega_{r}^{i}(X)=\left\{P_{\nu} \in \operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right) \mid b_{j}\left(X^{\nu}\right)<\infty \text { for } j \leq i\right\} .
$$

- For each $r>0$, we get a descending filtration,

$$
\operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right)=\Omega_{r}^{0}(X) \supseteq \Omega_{r}^{1}(X) \supseteq \Omega_{r}^{2}(X) \supseteq \cdots .
$$

CHARACTERISTIC VARIETIES

- Let $\widehat{\pi}=\operatorname{Hom}\left(\pi, \mathbb{C}^{*}\right)=H^{1}\left(X, \mathbb{C}^{*}\right)$ be the character group of $\pi=\pi_{1}(X)$.
- The characteristic varieties of X are the sets

$$
\mathcal{V}^{i}(X)=\left\{\rho \in \widehat{\pi} \mid H_{i}\left(X, \mathbb{C}_{\rho}\right) \neq 0\right\} .
$$

- If X has finite k-skeleton, then $\mathcal{V}^{i}(X)$ is a Zariski closed subset of the algebraic group $\widehat{\pi}$, for each $i \leq k$.
- Let $X^{\mathrm{ab}} \rightarrow X$ be the maximal abelian cover. View $H_{*}\left(X^{\text {ab }}, \mathbb{C}\right)$ as a module over $\mathbb{C}\left[\pi_{\mathrm{ab}}\right]$. Then

$$
\bigcup_{i \leq j} \nu^{i}(X)=\bigcup_{i \leq j} V\left(\operatorname{ann}\left(H_{i}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right) .
$$

- Moreover, $\mathcal{V}^{1}(X) \cap \hat{\pi}^{0}=\{1\} \cup V\left(\Delta_{\pi}\right)$, where Δ_{π} is the Alexander polynomial of π.

Propagation of Jump Loci

- Bieri-Eckmann (1973): X is a duality space of dimension d if $H^{i}(X, \mathbb{Z} \pi)=0$ for $i \neq d$, while $H^{d}(X, \mathbb{Z} \pi) \neq 0$ and torsion-free.
- We say X is an abelian duality space of dimension d if $H^{i}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)=0$ for $i \neq d$, while $H^{d}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right) \neq 0$ and torsion-free.
- Let $B=H^{d}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)$ be the dualizing $\mathbb{Z} \pi_{\mathrm{ab}}$-module. Given any $\mathbb{Z} \pi_{\mathrm{ab}}$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, B \otimes A)$.

THEOREM (DENHAM-S.-YUZVINSKY 2015)

Let X be an abelian duality space of dimension d. If $\rho: \pi_{1}(X) \rightarrow \mathbb{C}^{*}$ satisfies $H^{i}\left(X, \mathbb{C}_{\rho}\right) \neq 0$, then $H^{j}\left(X, \mathbb{C}_{\rho}\right) \neq 0$, for all $i \leq j \leq d$.
Consequently,

- The characteristic varieties propagate, i.e., $\mathcal{V}^{1}(X) \subseteq \cdots \subseteq \mathcal{V}^{d}(X)$.
- $\operatorname{dim} H^{1}(X, \mathbb{C}) \geq d-1$.
- If $d \geq 2$, then $H^{i}(X, \mathbb{C}) \neq 0$, for all $0 \leq i \leq d$.

EXPONENTIAL TANGENT CONES

- Let exp: $H^{1}(X, \mathbb{C}) \rightarrow H^{1}\left(X, \mathbb{C}^{*}\right)$ be the coefficient homomorphism induced by $\mathbb{C} \rightarrow \mathbb{C}^{*}, z \mapsto e^{z}$.
- Given a Zariski closed subset $W \subset H^{1}\left(X, \mathbb{C}^{*}\right)$, define the exponential tangent cone of W at 1 as

$$
\tau_{1}(W)=\left\{z \in H^{1}(X, \mathbb{C}) \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\} .
$$

- $\tau_{1}(W)$ is a finite union of rationally defined linear subspaces.
- $\tau_{1}(W)$ is non-empty iff $1 \in W$.
- For instance, if $T \cong\left(\mathbb{C}^{*}\right)^{r}$ is an algebraic subtorus, then $\tau_{1}(T)=T_{1}(T) \cong \mathbb{C}^{r}$.
- Set $\tau_{1}^{\mathfrak{k}}(W)=\tau_{1}(W) \cap H^{1}(X, \mathbb{k})$, for a subfield $\mathbb{k} \subset \mathbb{C}$.

Resonance varieties

- Let $A=H^{*}(X, \mathbb{C})$. For each $a \in A^{1}$, we have that $a^{2}=0$. Thus, there is a cochain complex $(A, a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \longrightarrow \cdots$.
- The resonance varieties of X are the homogeneous algebraic sets

$$
\mathcal{R}^{i}(X)=\left\{a \in A^{1} \mid H^{i}(A, a) \neq 0\right\} .
$$

Theorem (Libgober 2002, Dimca-Papadima-S. 2009)

$$
\tau_{1}\left(\mathcal{V}^{i}(X)\right) \subseteq \mathrm{TC}_{1}\left(\mathcal{V}^{i}(X)\right) \subseteq \mathcal{R}^{i}(X) .
$$

ThEOREM (DPS-2009, DP-2014)
Suppose X is a q-formal space. Then, for all $i \leq q$,

$$
\tau_{1}\left(\mathcal{V}^{i}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{V}^{i}(X)\right)=\mathcal{R}^{i}(X) .
$$

BOUNDING THE \sum-INVARIANTS

- Let $\chi \in S(X)$, and set $\Gamma=\operatorname{im}(\chi)$; then $\Gamma \cong \mathbb{Z}^{r}$, for some $r \geq 1$.
- A Laurent polynomial $p=\sum_{\gamma} n_{\gamma} \gamma \in \mathbb{Z} \Gamma$ is χ-monic if the greatest element in $\chi(\operatorname{supp}(p))$ is 0 , and $n_{0}=1$.
- Let $\mathcal{R} \Gamma_{\chi}$ be the Novikov ring, i.e., the localization of $\mathbb{Z} \Gamma$ at the multiplicative subset of all χ-monic polynomials (it's a PID).
- Let $b_{i}(X, \chi)=\operatorname{rank}_{\mathcal{R} \Gamma_{\chi}} H_{i}\left(X, \mathcal{R} \Gamma_{\chi}\right)$ be the Novikov-Betti numbers.

THEOREM (PAPADIMA-S. 2010)

- $-\chi \in \Sigma^{k}(X, \mathbb{Z}) \Longrightarrow b_{i}(X, \chi)=0, \forall i \leq k$.
- $\left.\chi \notin \tau_{1}^{\mathbb{R}}\left(\bigcup_{q \leq i} \mathcal{V}^{q}(X)\right)\right) \Longleftrightarrow b_{i}(X, \chi)=0, \forall i \leq k$.

Hence, $\quad \Sigma^{i}(X, \mathbb{Z}) \subseteq S(X) \backslash S\left(\tau_{1}^{\mathbb{R}}\left(\cup_{q \leq i} \mathcal{V}^{q}(X)\right)\right)$.
Thus, $\Sigma^{i}(X, \mathbb{Z})$ is contained in the complement of a finite union of rationally defined great subspheres.

A FORMULA AND A BOUND FOR THE Ω-INVARIANTS

THEOREM (DWYER-FRIED 1987, PAPADIMA-S. 2010)
For an epimorphism $\nu: \pi_{1}(X) \rightarrow \mathbb{Z}^{r}$, the following are equivalent:

- The vector space $\bigoplus_{i=0}^{k} H_{i}\left(X^{\nu}, \mathbb{C}\right)$ is finite-dimensional.
- The algebraic torus $\mathbb{T}_{\nu}=\operatorname{im}\left(\hat{\nu}: \widehat{\mathbb{Z}^{r}} \hookrightarrow \widehat{\pi_{1}(X)}\right)$ intersects the variety $\mathcal{W}^{k}(X)=\bigcup_{i \leq k} \mathcal{V}^{i}(X)$ in only finitely many points.

Note that $\exp \left(P_{\nu} \otimes \mathbb{C}\right)=\mathbb{T}_{\nu}$. Thus:
Corollary

$$
\Omega_{r}^{i}(X)=\left\{P \in \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \mid \operatorname{dim}\left(\exp (P \otimes \mathbb{C}) \cap \mathcal{W}^{i}(X)\right)=0\right\}
$$

Corollary

- If $\mathcal{W}^{i}(X)$ is finite, then $\Omega_{r}^{i}(X)=\operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right)$, where $n=b_{1}(X)$.
- If $\mathcal{W}^{i}(X)$ is infinite, then $\Omega_{n}^{q}(X)=\emptyset$, for all $q \geq i$.
- Let V be a homogeneous variety in \mathbb{k}^{n}. The set $\sigma_{r}(V)=\left\{P \in \operatorname{Gr}_{r}\left(\mathbb{k}^{n}\right) \mid P \cap V \neq\{0\}\right\}$ is Zariski closed.
- If $L \subset \mathbb{k}^{n}$ is a linear subspace, $\sigma_{r}(L)$ is the special Schubert variety defined by L. If $\operatorname{codim} L=d$, then $\operatorname{codim} \sigma_{r}(L)=d-r+1$.

Theorem

$$
\Omega_{r}^{i}(X) \subseteq \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \backslash \sigma_{r}\left(\tau_{1}^{\mathbb{Q}}\left(\mathcal{W}^{i}(X)\right)\right)
$$

- Thus, each set $\Omega_{r}^{i}(X)$ is contained in the complement of a finite union of special Schubert varieties.
- If $r=1$, the inclusion always holds as an equality. In general, though, the inclusion is strict.

Example

Let $\pi=\left\langle x_{1}, x_{2}, x_{3} \mid\left[x_{1}^{2}, x_{2}\right],\left[x_{1}, x_{3}\right], x_{1}\left[x_{2}, x_{3}\right] x_{1}^{-1}\left[x_{2}, x_{3}\right]\right\rangle$. Then

$$
\mathcal{V}^{1}(\pi)=\{1\} \cup\left\{t \in\left(\mathbb{C}^{*}\right)^{3} \mid t_{1}=-1\right\} .
$$

Thus, $\Omega_{2}^{1}(\pi)$ is a single point in $\operatorname{Gr}_{2}\left(H^{1}(G, \mathbb{Q})\right)=\mathbb{Q} \mathbb{P}^{2}$, hence not open.

COMPARING THE Σ - AND Ω-BOUNDS

Theorem

Suppose that $\quad \Sigma^{i}(X, \mathbb{Z})=S(X) \backslash S\left(\tau_{1}^{\mathbb{R}}\left(\mathcal{W}^{i}(X)\right)\right)$.
Then $\Omega_{r}^{i}(X)=\operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \backslash \sigma_{r}\left(\tau_{1}^{\mathbb{Q}}\left(\mathcal{W}^{i}(X)\right)\right)$, for all $r \geq 1$.

COROLLARY

Suppose there is an integer $r \geq 2$ such that $\Omega_{r}^{i}(X)$ is not Zariski open. Then $\Sigma^{i}(X, \mathbb{Z}) \neq S\left(\tau_{1}^{\mathbb{R}}\left(\mathcal{W}^{i}(X)\right)\right)^{\text {. }}$.

In general, the implication from the theorem cannot be reversed.

EXAMPLE

Let $\pi=\operatorname{BS}(1,2)=\left\langle x_{1}, x_{2} \mid x_{1} x_{2} x_{1}^{-1}=x_{2}^{2}\right\rangle$. Then $\mathcal{V}^{1}(\pi)=\{1,2\} \subset \mathbb{C}^{*}$.
Thus, $\Omega_{1}^{1}(\pi)=\{\mathrm{pt}\}$, and so $\Omega_{1}^{1}(\pi)=\sigma_{1}\left(\tau_{1}^{\mathbb{Q}}\left(\mathcal{V}^{1}(\pi)\right)\right)^{\text {c }}$.
On the other hand, $\Sigma^{1}(\pi)=\{-1\}$, whereas $S\left(\tau_{1}^{\mathbb{Q}}\left(\mathcal{V}^{1}(\pi)\right)\right)^{\mathbb{C}}=\{ \pm 1\}$.

TROPICAL GEOMETRY

- Let $\mathbb{K}=\mathbb{C}\{\{t\}\}$ be the field of Puiseux series over \mathbb{C}.
- A non-zero element of \mathbb{K} has the form $c(t)=c_{1} t^{a_{1}}+c_{2} t^{a_{2}}+\cdots$, where $c_{i} \in \mathbb{C}^{*}$ and $a_{1}<a_{2}<\cdots$ are rational numbers with a common denominator.
- The (algebraically closed) field \mathbb{K} admits a discrete valuation $v: \mathbb{K}^{*} \rightarrow \mathbb{Q}$, given by $v(c(t))=a_{1}$.
- Let $v:\left(\mathbb{K}^{*}\right)^{n} \rightarrow \mathbb{Q}^{n} \subset \mathbb{R}^{n}$ be the n-fold product of the valuation.
- The tropicalization of a variety $W \subset\left(\mathbb{K}^{*}\right)^{n}$, denoted $\operatorname{Trop}(W)$, is the closure of the set $v(W)$ in \mathbb{R}^{n}.
- This is a rational polyhedral complex in \mathbb{R}^{n}. For instance, if W is a curve, then $\operatorname{Trop}(W)$ is a graph with rational edge directions.
- If T be an algebraic subtorus of $\left(\mathbb{K}^{*}\right)^{n}$, then $\operatorname{Trop}(T)$ is the linear subspace $\operatorname{Hom}\left(\mathbb{K}^{*}, T\right) \otimes \mathbb{R} \subset \operatorname{Hom}\left(\mathbb{K}^{*},\left(\mathbb{K}^{*}\right)^{n}\right) \otimes \mathbb{R}=\mathbb{R}^{n}$.
- Moreover, if $z \in\left(\mathbb{K}^{*}\right)^{n}$, then $\operatorname{Trop}(z \cdot T)=\operatorname{Trop}(T)+v(z)$.
- For a variety $W \subset\left(\mathbb{C}^{*}\right)^{n}$, we may define its tropicalization by setting $\operatorname{Trop}(W)=\operatorname{Trop}\left(W \times_{\mathbb{C}} \mathbb{K}\right)$.
- In this case, the tropicalization is a polyhedral fan in \mathbb{R}^{n}.
- For instance, if $W=V(f)$ is a hypersurface, defined by a Laurent polynomial $f \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, then $\operatorname{Trop}(W)$ is the positive codimension- skeleton of the inner normal fan to the Newton polytope of f.

LEMMA

Let $W \subset\left(\mathbb{C}^{*}\right)^{n}$ be an algebraic variety. Then $\tau_{1}^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.

TROPICALIZING THE CHARACTERISTIC VARIETIES

- Let X be a connected CW-complex w/finite k-skeleton, $n=b_{1}(X)$.
- For each $q \leq k$, let $\mathcal{W}^{q}(X)=\bigcup_{i \leq q} \mathcal{V}^{i}(X) \cap H^{1}\left(X, \mathbb{C}^{*}\right)^{0} \subset\left(\mathbb{C}^{*}\right)^{n}$.
- Let $\operatorname{Trop}\left(\mathcal{W}^{q}(X)\right) \subset \mathbb{R}^{n}$ be its tropicalization.

THEOREM

$$
\Sigma^{q}(X, \mathbb{Z}) \subseteq S(X) \backslash S\left(\operatorname{Trop}\left(\mathcal{W}^{q}(X)\right)\right) .
$$

Corollary

Let π be a finitely generated group, and let Δ_{π} be its Alexander polynomial. Then:

$$
\Sigma^{1}(\pi) \subseteq S(\pi) \backslash S\left(\operatorname{Trop}\left(V\left(\Delta_{\pi}\right)\right)\right) .
$$

ExAMPLE

- Let $\pi=\left\langle a, b \mid a^{-1} b^{2} a b^{-2}=a b a^{-1} b^{-1}\right\rangle$.
- By Brown's algorithm, $\Sigma^{1}(\pi, \mathbb{Z})=S^{1} \backslash\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),(0,-1),(-1,0)\right\}$.
- On the other hand, $\Delta_{\pi}=1+b-a$.
- Thus, $\Sigma^{1}(G)=S\left(\operatorname{Trop}\left(V\left(\Delta_{\pi}\right)\right)\right)^{\complement}$, although $\tau_{1}\left(\mathcal{V}^{1}(\pi)\right)=\{0\}$.

ExAMPLE

- Let $\pi=\langle a, b| a^{2} b a^{-1} b a^{2} b a^{-1} b^{-3} a^{-1} b a^{2} b a^{-1} b a b^{-1} a^{-2} b^{-1}$. $\left.a b^{-1} a^{-2} b^{-1} a b^{3} a b^{-1} a^{-2} b^{-1} a b^{-1} a^{-1} b\right\rangle$ (Dunfield's link group).
- Then $\Delta_{\pi}=(a-1)(a b-1)$, and so $S\left(\operatorname{Trop}\left(V\left(\Delta_{\pi}\right)\right)\right)$ consists of 4 points.
- Yet $\Sigma^{1}(\pi, \mathbb{Z})$ consists of two open arcs joining those two pairs of points. Thus, the tropical bound is strict in this case.

Toric complexes and RAAGs

- Let L be a d-dimensional simplicial complex on vertex set V with $|\mathrm{V}|=n$.
- The toric complex T_{L} is the subcomplex of T^{n} obtained by deleting the cells corresponding to the missing simplices of L.
- T_{L} is a connected CW-complex, of dimension $d+1$. Moreover, T_{L} is formal.
- $\pi_{\Gamma}:=\pi_{1}\left(T_{L}\right)$ is the right-angled Artin group associated to the graph $\Gamma=L^{(1)}$.
- $K\left(\pi_{\Gamma}, 1\right)=T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ.
- $H^{*}\left(T_{L}, \mathbb{Z}\right)$ is the exterior Stanley-Reisner ring of L, with generators the duals v^{*}, and relations the monomials corresponding to the missing simplices of L.
L is Cohen-Macaulay if for each simplex $\sigma \in L$, the reduced cohomology of $\operatorname{lk}(\sigma)$ is concentrated in degree $d-|\sigma|$ and is torsion-free.

> Theorem (N. Brady-Meier 2001, Jensen-Meier 2005)
> A right-angled Artin group π_{Γ} is a duality group if and only if Δ_{Γ} is Cohen-Macaulay. Moreover, π_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

THEOREM (DSY 2015)

A toric complex T_{L} is an abelian duality space if and only if L is Cohen-Macaulay, in which case the characteristic varieties of T_{L} propagate.

- Identify $\widehat{\pi_{\Gamma}}=H^{1}\left(T_{L}, \mathbb{C}^{*}\right)$ with $\left(\mathbb{C}^{*}\right)^{V}=\left(\mathbb{C}^{*}\right)^{n}$.
- Each subset $\mathrm{W} \subseteq \mathrm{V}$ yields an algebraic subtorus $\left(\mathbb{C}^{*}\right)^{\mathrm{W}} \subset\left(\mathbb{C}^{*}\right)^{\mathrm{V}}$.

THEOREM (PAPADIMA-S. 2009)

$$
\mathcal{V}^{i}\left(T_{L}\right)=\bigcup_{\mathrm{W}}\left(\mathbb{C}^{*}\right)^{\mathrm{W}} \quad \text { and } \quad \mathcal{R}^{i}\left(T_{L}\right)=\bigcup_{\mathrm{W}} \mathbb{C}^{\mathrm{W}}
$$

where the union is taken over all $\mathrm{W} \subseteq \underset{\sim}{\mathrm{V}}$ for which there is a simplex $\sigma \in L_{V \backslash W}$ and an index $j \leq i$ such that $\widetilde{H}_{j-1-|\sigma|}\left(\operatorname{lk}_{L_{w}}(\sigma), \mathbb{C}\right) \neq 0$.

Corollary

$$
\Omega_{r}^{i}\left(T_{L}\right)=\operatorname{Gr}_{r}\left(\mathbb{Q}^{\mathrm{V}}\right) \backslash \sigma_{r}\left(\mathcal{R}^{i}\left(T_{L}, \mathbb{Q}\right)\right)
$$

Using results of Meier-Meinert-VanWyk \& Bux-Gonzalez, we get:
Corollary

$$
\Sigma^{i}\left(\pi_{\Gamma}, \mathbb{R}\right)=S\left(\mathcal{R}^{i}\left(\pi_{\Gamma}, \mathbb{R}\right)\right)^{\complement}
$$

Hyperplane arrangements

- Let $\mathcal{A}=\left\{H_{1}, \ldots H_{n}\right\}$ be an (essential, central) arrangement of hyperplanes in \mathbb{C}^{d}.
- Its complement, $M(\mathcal{A}) \subset\left(\mathbb{C}^{*}\right)^{n}$, is a Stein manifold, and thus has the homotopy type of d-dimensional CW-complex.
- $\operatorname{Trop}(M(\mathcal{A}))$ is the 'Bergman fan' of the underlying matroid of \mathcal{A}.

THEOREM (DAVIS-JANUSZKIEWICZ-OKUN (2011), DSY (2015))

Suppose $A=\mathbb{Z}[\pi]$ or $A=\mathbb{Z}\left[\pi_{\mathrm{ab}}\right]$. Then $H^{p}(M(\mathcal{A}), A)=0$ for all $p \neq d$, and $H^{d}(M(\mathcal{A}), A)$ is a free abelian group.

Corollary

- $M(\mathcal{A})$ is a duality and an abelian duality space of dimension d.
- The characteristic varieties of $M(\mathcal{A})$ propagate.
- The cohomology ring $\left.H^{*}(M(\mathcal{A}), \mathbb{Z})\right)$ is the Orlik-Solomon algebra of the underlying matroid. Moreover, $M(\mathcal{A})$ is formal.
- Work of Arapura, Falk, D.Cohen-A.S., Libgober-Yuzvinsky, and Falk-Yuzvinsky completely describes the resonance varieties $\mathcal{R}^{1}(\mathcal{A})=\mathcal{R}^{1}(M(\mathcal{A}), \mathbb{C}):$
- $\mathcal{R}^{1}(\mathcal{A})$ is a union of linear subspaces in $H^{1}(M(\mathcal{A}), \mathbb{C}) \cong \mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- Each k-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of $\mathcal{R}^{1}(\mathcal{A})$ of dimension $k-1$. Moreover, all components of $\mathcal{R}^{1}(\mathcal{A})$ arise in this way.

Question (S., at Oberwolfach Miniworkshop 2007)

Given an arrangement \mathcal{A}, do we have

$$
\Sigma^{1}(M(\mathcal{A}), \mathbb{Z})=S\left(\mathcal{R}^{1}(M(\mathcal{A}), \mathbb{R})\right)^{\complement} ?
$$

Example (Koban-McCAMmOND-MEIER 2013)

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^{n}, defined by $\prod_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)=0$. Then $M(\mathcal{A})=\operatorname{Conf}(n, \mathbb{C}) \simeq K\left(P_{n}, 1\right)$.
- Answer to (\star) is yes: $\Sigma^{1}(M(\mathcal{A}), \mathbb{Z})$ is the complement of the union of $\binom{n}{3}+\binom{n}{4}$ planes in $\mathbb{C}\binom{n}{2}$, intersected with the unit sphere.

Example (S.)

- Let \mathcal{A} be the "deleted B_{3} " arrangement, defined by

$$
z_{1} z_{2}\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{2}^{2}-z_{3}^{2}\right)=0
$$

- $\left.\mathcal{R}^{1}(M(\mathcal{A}), \mathbb{R})\right) \varsubsetneqq \operatorname{Trop}\left(\mathcal{V}^{1}(M(\mathcal{A}))\right.$, and so the answer to (\star) is no.

KÄHLER MANIFOLDS

Theorem (Delzant 2010, Papadima-S. 2010)
Let M be a compact Kähler manifold with $b_{1}(M)>0$. Then

$$
\Sigma^{1}(M, \mathbb{Z})=S\left(\mathcal{R}^{1}(M, \mathbb{R})\right)^{\complement}
$$

if and only if there is no pencil $f: M \rightarrow E$ onto an elliptic curve E such that f has multiple fibers.

THEOREM (S. 2013)

- If M admits an orbifold fibration with base genus $g \geq 2$, then $\Omega_{r}^{1}(M)=\emptyset$, for all $r>b_{1}(M)-2 g$.
- Otherwise, $\Omega_{r}^{1}(M)=\operatorname{Gr}_{r}\left(H^{1}(M, \mathbb{Q})\right)$, for all $r \geq 1$.
- Suppose M admits an orbifold fibration with multiple fibers and base genus $g=1$. Then $\Omega_{2}^{1}(M)$ is not an open subset of $\operatorname{Gr}_{2}\left(H^{1}(M, \mathbb{Q})\right)$.

