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Quasi-toric manifolds and small covers

Quasi-toric manifolds and small covers
Let P be an n-dimensional convex polytope; facets F1, . . . ,Fm.

Assume P is simple (each vertex is the intersection of n facets).

Then P determines a dual simplicial complex, K = KBP , of
dimension n� 1:

� Vertex set [m] = t1, . . . ,mu.
� Add a simplex σ = (i1, . . . , ik ) whenever Fi1 , . . . ,Fik intersect.

Figure: A prism P and its dual simplicial complex K
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Quasi-toric manifolds and small covers

Let χ be an n-by-m matrix with coefficients in G = Z or Z2.
χ is characteristic for P if, for each vertex v = Fi1 X � � � X Fin , the
n-by-n minor given by the columns i1, . . . , in of χ is unimodular.
Let T = S1 if G = Z, and T = S0 = t�1u if G = Z2.
Given q P P, let F (q) = Fj1 X � � � X Fjk be the maximal face so that
q P F (q)�.
The map χ associates to F (q) a subtorus TF (q) � Tk inside Tn.
To the pair (P,χ), Davis and Januszkiewicz associate the
quasi-toric manifold

Tn �P/ �, where (t ,p) � (u,q) if p = q and t � u�1 P TF (q).

For G = Z, this is a complex q-tm, denoted MP(χ)
� a closed, orientable manifold of dimension 2n.

For G = Z2, this is a real q-tm (or, small cover), denoted NP(χ)
� a closed, not necessarily orientable manifold of dimension n.
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Quasi-toric manifolds and small covers

Example

Let P = ∆n be the n-simplex, and χ the n� (n + 1) matrix

( 1 ��� 0 1
...

...
0 ��� 1 1

)
.

Then
MP(χ) = CPn and NP(χ) = RPn.

P T�P T�P/ �

CP1

RP1
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Quasi-toric manifolds and small covers

More generally, if X is a smooth, projective toric variety, then
X (C) = MP(χ) and X (R) = NP(χ mod 2Z).
But the converse does not hold:

� M = CP27CP2 is a quasi-toric manifold over the square, but it does
not admit any complex structure. Thus, M � X (C).

� If P is a 3-dim polytope with no triangular or quadrangular faces,
then, by a theorem of Andreev, NP(χ) is a hyperbolic 3-manifold.
(Characteristic χ exist for P = dodecahedron, by work of Garrison
and Scott.) Then, by a theorem of Delaunay, NP(χ) � X (R).

Davis and Januszkiewicz found presentations for the cohomology
rings H�(MP(χ),Z) and H�(NP(χ),Z2), similar to the ones given
by Danilov and Jurkiewicz for toric varieties. In particular,

dimQ H2i(MP(χ),Q) = dimZ2 Hi(NP(χ),Z2) = hi(P),

where (h0(P), . . . ,hn(P)) is the h-vector of P, depending only on
the number of i-faces of P (0 ¤ i ¤ n).
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Quasi-toric manifolds and small covers

Our goal is to compute H�(NP(χ),Q), both additively and
multiplicatively.
The Betti numbers of NP(χ) no longer depend just on the h-vector
of P, but also on the characteristic matrix χ.

Example
Let P be the square (with n = 2, m = 4). There are precisely two small
covers over P:

The torus T 2 = NP(χ), with χ =
(

1 0 1 0
0 1 0 1

)
.

The Klein bottle K` = NP(χ
1), with χ1 =

(
1 0 1 0
0 1 1 1

)
.

Then b1(T 2) = 2, yet b1(K`) = 1.

Key ingredient in our approach: use finite covers involving (up to
homotopy) certain generalized moment-angle complexes:

Zm�n
2

// ZK (S1,S0) // NP(χ) ,

Zn
2

// NP(χ) // ZK (RP8, �) .
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Generalized moment-angle complexes

Generalized moment-angle complexes
Let (X ,A) be a pair of topological spaces, and K a simplicial
complex on vertex set [m].
The corresponding generalized moment-angle complex is

ZK (X ,A) =
¤
σPK

(X ,A)σ � X�m

where (X ,A)σ = tx P X�m | xi P A if i R σu.
Construction interpolates between A�m and X�m.
Homotopy invariance:
(X ,A) � (X 1,A1) ùñ ZK (X ,A) � ZK (X 1,A1).
Converts simplicial joins to direct products:
ZK�L(X ,A) � ZK (X ,A)�ZL(X ,A).
Takes a cellular pair (X ,A) to a cellular subcomplex of X�m.
Particular case: ZK (X ) := ZK (X , �).
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Generalized moment-angle complexes

Functoriality properties
Let f : (X ,A)Ñ (Y ,B) be a (cellular) map. Then f�n : X�n Ñ Y�n

restricts to a (cellular) map ZK (f ) : ZK (X ,A)Ñ ZK (Y ,B).

Let f : (X , �) ãÑ (Y , �) be a cellular inclusion. Then,
ZK (f )� : Cq(ZK (X )) ãÑ Cq(ZK (Y )) admits a retraction, @q ¥ 0.

Let φ : K ãÑ L be the inclusion of a full subcomplex. Then there
are induced maps Zφ : ZL(X ,A)� ZK (X ,A) and
Zφ : ZK (X ,A) ãÑ ZL(X ,A), such that Zφ �Zφ = id.

Fundamental group and asphericity (Davis)
π1(ZK (X , �)) is the graph product of Gv = π1(X , �) along the
graph Γ = K (1), where

ProdΓ(Gv ) = �
vPV

Gv /t[gv ,gw ] = 1 if tv ,wu P E , gv P Gv , gw P Gwu.

Suppose X is aspherical. Then ZK (X ) is aspherical iff K is a flag
complex.
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Generalized moment-angle complexes

Generalized Davis–Januszkiewicz spaces
G abelian topological group G  GDJ space ZK (BG).

We have a bundle Gm Ñ ZK (EG,G)Ñ ZK (BG).

If G is a finitely generated (discrete) abelian group, then
π1(ZK (BG))ab = Gm, and thus ZK (EG,G) is the universal
abelian cover of ZK (BG).

G = S1: Usual Davis–Januszkiewicz space, ZK (CP8).
� π1 = t1u.
� H�(ZK (CP8),Z) = S/IK , where S = Z[x1, . . . , xm], deg xi = 2.

G = Z2: Real Davis–Januszkiewicz space, ZK (RP8).
� π1 = WK , the right-angled Coxeter group associated to K (1).
� H�(ZK (RP8),Z2) = R/IK , where R = Z2[x1, . . . , xm], deg xi = 1.

G = Z: Toric complex, ZK (S1).
� π1 = AK , the right-angled Artin group associated to K (1).
� H�(ZK (S1),Z) = E/JK , where E =

�
[e1, . . . ,em], deg ei = 1.
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Generalized moment-angle complexes

Standard moment-angle complexes
Complex moment-angle complex, ZK (D2,S1) � ZK (ES1,S1).

� π1 = π2 = t1u.
� H�(ZK (D2,S1),Z) = TorS(S/IK ,Z).

Real moment-angle complex, ZK (D1,S0) � ZK (EZ2,Z2).
� π1 = W 1

K , the derived subgroup of WK .
� H�(ZK (D1,S0),Z2) = TorR(R/IK ,Z2) — only additively!

Example
Let K be a circuit on 4 vertices.
Then ZK (D2,S1) = S3 �S3,
while ZK (D1,S0) = S1 �S1

(embedded in the 4-cube).
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Generalized moment-angle complexes

Theorem (Bahri, Bendersky, Cohen, Gitler)

Let K a simplicial complex on m vertices. There is a natural homotopy
equivalence

Σ(ZK (X ,A)) � Σ
( ª

I�[m]

pZKI (X ,A)
)
,

where KI is the induced subcomplex of K on the subset I � [m].

Corollary

If X is contractible and A is a discrete subspace consisting of p points,
then

Hk (ZK (X ,A);R) �
à

I�[m]

(p�1)|I|à
1

rHk�1(KI ;R).
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Finite abelian covers

Finite abelian covers
Let X be a connected, finite-type CW-complex, with
π = π1(X , x0).

Let p : Y Ñ X a (connected) regular cover, with group of deck
transformations Γ. We then have a short exact sequence

1 // π1(Y , y0)
p7 // π1(X , x0)

ν // Γ // 1 .

Conversely, every epimorphism ν : π � Γ defines a regular cover
X ν Ñ X (unique up to equivalence), with π1(X ν) = ker(ν).

If Γ is abelian, then ν = χ � ab factors through the abelianization,
while X ν = X χ is covered by the universal abelian cover of X :

X ab //

!!

X ν

p
��

X

ÐÑ π1(X )

ν

%%

ab // π1(X )ab

χ

��
Γ
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Finite abelian covers

Let Cq(X ν; k) be the group of cellular q-chains on X ν, with
coefficients in a field k. We then have natural isomorphisms

Cq(X ν;k) � Cq(X ;kΓ) � Cq(rX )bkπ kΓ.

Now suppose Γ is finite abelian, k = k̄, and chark = 0. Then, all
k-irreps of Γ are 1-dimensional, and so

Cq(X ν; k) �
à

ρPHom(Γ,k�)

Cq(X ; kρ�ν),

where kρ�ν denotes the field k, viewed as a kπ-module via the
character ρ � ν : π Ñ k�.

Thus, Hq(X ν; k) �
À

ρPHom(Γ,k�) Hq(X ;kρ�ν).
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Finite abelian covers

Now let P be an n-dimensional, simple polytope with m facets,
and set K = KBP .

Let χ : Zm
2 Ñ Zn

2 be a characteristic matrix for P.

Then ker(χ) � Zm�n
2 acts freely on ZK (D1,S0), with quotient the

real quasi-toric manifold NP(χ).

NP(χ) comes equipped with an action of Zm
2 / ker(χ) � Zn

2; the
orbit space is P.

Furthermore, ZK (D1,S0) is homotopy equivalent to the maximal
abelian cover of ZK (RP8), corresponding to the sequence

1 //W 1
K

//WK
ab // Zm

2
// 1 .

Thus, NP(χ) is, up to homotopy, a regular Zn
2-cover of ZK (RP8),

corresponding to the sequence

1 // π1(NP(χ)) //WK
ν=χ�ab // Zn

2
// 1 .
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The homology of abelian covers of GDJ spaces

The homology of abelian covers of GDJ spaces
Let K be a simplicial complex on m vertices.
Identify π1(ZK (BZp))ab = Zm

p , generated by x1, . . . , xm.
Let λ : Zm

p Ñ k� be a character, supp(λ) = ti P [m] | λ(xi) � 1u.
Let Kλ be the induced subcomplex on vertex set supp(λ).

Proposition

Hq(ZK (BZp);kλ) � rHq�1(Kλ;k).

Idea: The inclusion ι : (S1, �) ãÑ (BZp, �) induces a cellular inclusion
ZK (ι) : TK = ZK (S1) ãÑ ZK (BZp). Moreover, φ : Kλ ãÑ K induces a

cellular inclusion Zφ : TKλ
ãÑ TK . Let λ̄ : Zm � Zm

p
λ
ÝÑ k�. We then get

(chain) retractions
Cq(TK ;kλ̄)

��
Cq(ZK (BZp);kλ)

44

// Cq(TKλ
;kλ̄)

� // rCq�1(Kλ;k)
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The homology of abelian covers of GDJ spaces

This shows that dimk Hq(ZK (BZp); kλ) ¥ dimk rHq�1(Kλ; k).
For the reverse inequality, we use [BBCG], which, in this case, says

Hq(ZK (EZp,Zp); k) �
à

I�[m]

(p�1)|I|à
1

rHq�1(KI ; k),

and the fact that ZK (EZp,Zp) � (ZK (BZp))ab, which gives

Hq(ZK (EZp,Zp);k) �
à

ρPHom(Zm
p ,k�)

Hq(ZK (BZp); kρ).

Theorem

Let G be a prime-order cyclic group, and let ZK (BG)χ be the abelian
cover defined by an epimorphism χ : Gm � Γ. Then

Hq(ZK (BG)χ;k) �
à

ρPHom(Γ;k�)

rHq�1(Kρ�χ; k),

where Kρ�χ is the induced subcomplex of K on vertex set supp(ρ � χ).
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The homology of real quasi-toric manifolds

The homology of real quasi-toric manifolds
Let again P be a simple polytope, and set K = KBP .
Let χ : Zm

2 Ñ Zn
2 be a characteristic matrix for P.

Denote by χi P Zm
2 the i-th row of χ.

For each subset S � [n], write χS =
°

iPS χi P Zm
2 .

S also determines a character ρS : Zn
2 Ñ k�, taking the i-th

generator to �1 if i P S, and to 1 if i R S.
Every ρ P Hom(Zn

2, C�) arises as ρ = ρS, where S = supp(ρ).
supp(ρS � χ) consists of those j P [m] for which the j-th entry of χS
is non-zero.
Let Kχ,S be the induced subcomplex on this vertex set.

Corollary

The Betti numbers of the real, quasi-toric manifold NP(χ) are given by

bq(NP(χ)) =
¸

S�[n]

b̃q�1(Kχ,S).
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The homology of real quasi-toric manifolds

Example
Again, let P be the square, and K = KBP the 4-cycle.

Let T 2 = NP(χ), where χ =
(

1 0 1 0
0 1 0 1

)
.

Compute:

S H t1u t2u t1,2u
χS ( 0 0 0 0 ) ( 1 0 1 0 ) ( 0 1 0 1 ) ( 1 1 1 1 )

supp(χS) H t1,3u t2,4u t1,2,3,4u
Kχ,S H tt1u, t3uu tt2u, t4uu K

Thus:
b0(T 2) = b̃�1(H) = 1,

b1(T 2) = b̃0(Kχ,t1u) + b̃0(Kχ,t2u) = 1 + 1 = 2,

b2(T 2) = b̃1(K ) = 1.
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Cup products in abelian covers of GDJ-spaces

Cup products in abelian covers of GDJ-spaces
As before, let X ν Ñ X be a regular, finite abelian cover, corresponding
to an epimorphism ν : π1(X )� Γ, and let k = C. The cellular cochains
on X ν decompose as

Cq(X ν;k) �
à

ρPHom(Γ,k�)

Cq(X ; kρ�ν),

The cup product map, Cp(X ν, k)bk Cq(X ν, k) !ÝÝÑ Cp+q(X ν, k),
restricts to those pieces, as follows:

Cp(X ; kρ�ν)bk Cq(X ; kρ1�ν)
! //

�

��

Cp+q(X ;k(ρ�ρ1)�ν)

Cp+q(X �X ; kρ�ν bk kρ1�ν)
µ� // Cp+q(X �X ;k(ρbρ1)�ν)

∆�

OO

where µ� is induced by the multiplication map on coefficients, and ∆�

is induced by a cellular approximation to the diagonal ∆ : X Ñ X �X .
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Cup products in abelian covers of GDJ-spaces

Proposition
Let ZK (BZp)ν be a regular abelian cover, with characteristic
homomorphism χ : Zm

p Ñ Γ. The cup product in

H�(ZK (BG)ν; k) �
8à

q=0

 à
ρPHom(Γ;k�)

rHq�1(Kρ�χ; k)


is induced by the following maps on simplicial cochains:

rCp�1(Kρ�χ; k�
)
b rCq�1(Kρ1�χ; k�

)
Ñ rCp+q�1(K(ρbρ1)�χ;k�

)
σ̂b τ̂ ÞÑ

#
�{σ\ τ if σX τ = H,

0 otherwise,

where σ\ τ is the simplex with vertex set the union of the vertex sets
of σ and τ, and σ̂ is the Kronecker dual of σ.
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Formality properties

Formality properties

A finite-type CW-complex X is formal if its Sullivan minimal model
is quasi-isomorphic to (H�(X ,Q),0)—roughly speaking,
H�(X ,Q) determines the rational homotopy type of X .

(Notbohm–Ray) If X is formal, then ZK (X ) is formal.

In particular, toric complexes TK = ZK (S1) and generalized
Davis–Januszkiewicz spaces ZK (BG) are always formal.

(Félix, Tanré) More generally, if both X and A are formal, and the
inclusion i : A ãÑ X induces a surjection i� : H�(X ,Q)Ñ H�(A,Q),
then ZK (X ,A) is formal.

(Panov–Ray) Complex quasi-toric manifolds MP(χ) are always
formal.
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Formality properties

(Baskakov, Denham–A.S.) Moment angle complexes ZK (D2,S1)
are not always formal: they can have non-zero Massey products.

Example (D-S)
A simplicial complex K
for which ZK (D2,S1) carries
a non-trivial triple Massey product.

It follows that real moment-angle complexes ZK (D1,S0) are not
always formal.
Question: are real quasi-toric manifolds NP(χ) formal?
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