The rational cohomology of real quasi-toric manifolds

Alex Suciu

Northeastern University

Joint work with Alvise Trevisan (VU Amsterdam)

Toric Methods in Homotopy Theory Queen's University Belfast July 20, 2011

Quasi-toric manifolds and small covers

- Let *P* be an *n*-dimensional convex polytope; facets F_1, \ldots, F_m .
- Assume *P* is *simple* (each vertex is the intersection of *n* facets).
- Then *P* determines a dual simplicial complex, *K* = *K*_{∂P}, of dimension *n* − 1:
 - Vertex set $[m] = \{1, \ldots, m\}$.
 - Add a simplex $\sigma = (i_1, \ldots, i_k)$ whenever F_{i_1}, \ldots, F_{i_k} intersect.

Figure: A prism *P* and its dual simplicial complex *K*

- Let χ be an *n*-by-*m* matrix with coefficients in $G = \mathbb{Z}$ or \mathbb{Z}_2 .
- *χ* is *characteristic* for *P* if, for each vertex *v* = *F*_{i1} ∩ ··· ∩ *F*_{in}, the *n*-by-*n* minor given by the columns *i*₁, ..., *i_n* of *χ* is unimodular.
- Let $\mathbb{T} = S^1$ if $G = \mathbb{Z}$, and $\mathbb{T} = S^0 = \{\pm 1\}$ if $G = \mathbb{Z}_2$.
- Given $q \in P$, let $F(q) = F_{j_1} \cap \cdots \cap F_{j_k}$ be the maximal face so that $q \in F(q)^{\circ}$.
- The map χ associates to F(q) a subtorus $\mathbb{T}_{F(q)} \cong \mathbb{T}^k$ inside \mathbb{T}^n .
- To the pair (*P*, χ), Davis and Januszkiewicz associate the *quasi-toric manifold*

 $\mathbb{T}^n \times P / \sim$, where $(t, p) \sim (u, q)$ if p = q and $t \cdot u^{-1} \in \mathbb{T}_{F(q)}$.

- For $G = \mathbb{Z}$, this is a *complex* q-tm, denoted $M_P(\chi)$
 - ▶ a closed, orientable manifold of dimension 2*n*.

For G = Z₂, this is a *real* q-tm (or, *small cover*), denoted N_P(χ)
 a closed, not necessarily orientable manifold of dimension *n*.

Example

Let $P = \Delta^n$ be the *n*-simplex, and χ the $n \times (n+1)$ matrix $\begin{pmatrix} 1 & \cdots & 0 & 1 \\ & \ddots & \vdots \\ 0 & \cdots & 1 & 1 \end{pmatrix}$. Then

Then

$$M_P(\chi) = \mathbb{CP}^n$$
 and $N_P(\chi) = \mathbb{RP}^n$.

4/22

- More generally, if X is a smooth, projective toric variety, then $X(\mathbb{C}) = M_P(\chi)$ and $X(\mathbb{R}) = N_P(\chi \mod 2\mathbb{Z})$.
- But the converse does not hold:
 - $M = \mathbb{CP}^2 \sharp \mathbb{CP}^2$ is a quasi-toric manifold over the square, but it does not admit any complex structure. Thus, $M \not\cong X(\mathbb{C})$.
 - If *P* is a 3-dim polytope with no triangular or quadrangular faces, then, by a theorem of Andreev, $N_P(\chi)$ is a hyperbolic 3-manifold. (Characteristic χ exist for P = dodecahedron, by work of Garrison and Scott.) Then, by a theorem of Delaunay, $N_P(\chi) \ncong X(\mathbb{R})$.
- Davis and Januszkiewicz found presentations for the cohomology rings H^{*}(M_P(χ), Z) and H^{*}(N_P(χ), Z₂), similar to the ones given by Danilov and Jurkiewicz for toric varieties. In particular,

 $\dim_{\mathbb{Q}} H_{2i}(M_{\mathcal{P}}(\chi), \mathbb{Q}) = \dim_{\mathbb{Z}_2} H_i(N_{\mathcal{P}}(\chi), \mathbb{Z}_2) = h_i(\mathcal{P}),$

where $(h_0(P), \ldots, h_n(P))$ is the *h*-vector of *P*, depending only on the number of *i*-faces of *P* ($0 \le i \le n$).

- Our goal is to compute H^{*}(N_P(χ), Q), both additively and multiplicatively.
- The Betti numbers of N_P(χ) no longer depend just on the *h*-vector of P, but also on the characteristic matrix χ.

Example

Let *P* be the square (with n = 2, m = 4). There are precisely two small covers over *P*:

• The torus $T^2 = N_P(\chi)$, with $\chi = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.

• The Klein bottle $K\ell = N_P(\chi')$, with $\chi' = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$.

Then $b_1(T^2) = 2$, yet $b_1(K\ell) = 1$.

• Key ingredient in our approach: use finite covers involving (up to homotopy) certain generalized moment-angle complexes:

$$\mathbb{Z}_{2}^{m-n} \longrightarrow \mathcal{Z}_{K}(S^{1}, S^{0}) \longrightarrow \mathcal{N}_{P}(\chi) ,$$
$$\mathbb{Z}_{2}^{n} \longrightarrow \mathcal{N}_{P}(\chi) \longrightarrow \mathcal{Z}_{K}(\mathbb{RP}^{\infty}, *) .$$

Generalized moment-angle complexes

- Let (*X*, *A*) be a pair of topological spaces, and *K* a simplicial complex on vertex set [*m*].
- The corresponding generalized moment-angle complex is

$$\mathcal{Z}_{\mathcal{K}}(X, \mathcal{A}) = \bigcup_{\sigma \in \mathcal{K}} (X, \mathcal{A})^{\sigma} \subset X^{\times m}$$

where $(X, A)^{\sigma} = \{x \in X^{\times m} \mid x_i \in A \text{ if } i \notin \sigma\}.$

- Construction interpolates between $A^{\times m}$ and $X^{\times m}$.
- Homotopy invariance:

 $(X, A) \simeq (X', A') \implies \mathcal{Z}_{\mathcal{K}}(X, A) \simeq \mathcal{Z}_{\mathcal{K}}(X', A').$

- Converts simplicial joins to direct products: $\mathcal{Z}_{K*L}(X, A) \cong \mathcal{Z}_{K}(X, A) \times \mathcal{Z}_{L}(X, A).$
- Takes a cellular pair (X, A) to a cellular subcomplex of $X^{\times m}$.
- Particular case: $\mathcal{Z}_{\mathcal{K}}(X) := \mathcal{Z}_{\mathcal{K}}(X, *).$

Functoriality properties

- Let $f: (X, A) \to (Y, B)$ be a (cellular) map. Then $f^{\times n}: X^{\times n} \to Y^{\times n}$ restricts to a (cellular) map $\mathcal{Z}_{\mathcal{K}}(f): \mathcal{Z}_{\mathcal{K}}(X, A) \to \mathcal{Z}_{\mathcal{K}}(Y, B)$.
- Let $f: (X, *) \hookrightarrow (Y, *)$ be a cellular inclusion. Then, $\mathcal{Z}_{\mathcal{K}}(f)_*: C_q(\mathcal{Z}_{\mathcal{K}}(X)) \hookrightarrow C_q(\mathcal{Z}_{\mathcal{K}}(Y))$ admits a retraction, $\forall q \ge 0$.
- Let $\phi \colon K \hookrightarrow L$ be the inclusion of a full subcomplex. Then there are induced maps $\mathcal{Z}^{\phi} \colon \mathcal{Z}_{L}(X, A) \twoheadrightarrow \mathcal{Z}_{K}(X, A)$ and $\mathcal{Z}_{\phi} \colon \mathcal{Z}_{K}(X, A) \hookrightarrow \mathcal{Z}_{L}(X, A)$, such that $\mathcal{Z}_{\phi} \circ \mathcal{Z}^{\phi} = \mathsf{id}$.

Fundamental group and asphericity (Davis)

• $\pi_1(\mathcal{Z}_{\mathcal{K}}(X,*))$ is the graph product of $G_v = \pi_1(X,*)$ along the graph $\Gamma = \mathcal{K}^{(1)}$, where

 $\operatorname{Prod}_{\Gamma}(G_{\nu}) = \underset{\nu \in V}{\ast} G_{\nu} / \{ [g_{\nu}, g_{w}] = 1 \text{ if } \{\nu, w\} \in E, g_{\nu} \in G_{\nu}, g_{w} \in G_{w} \}.$

Suppose X is aspherical. Then Z_K(X) is aspherical iff K is a flag complex.

Generalized Davis–Januszkiewicz spaces

- *G* abelian topological group *G* \rightsquigarrow GDJ space $\mathcal{Z}_{\mathcal{K}}(BG)$.
- We have a bundle $G^m \to \mathcal{Z}_K(EG, G) \to \mathcal{Z}_K(BG)$.
- If *G* is a finitely generated (discrete) abelian group, then
 π₁(Z_K(BG))_{ab} = G^m, and thus Z_K(EG, G) is the universal
 abelian cover of Z_K(BG).
- G = S¹: Usual Davis–Januszkiewicz space, Z_K(ℂℙ[∞]).
 π₁ = {1}.
 - $H^*(\mathcal{Z}_K(\mathbb{CP}^\infty),\mathbb{Z}) = S/I_K$, where $S = \mathbb{Z}[x_1, \ldots, x_m]$, deg $x_i = 2$.
- $G = \mathbb{Z}_2$: Real Davis–Januszkiewicz space, $\mathcal{Z}_{\mathcal{K}}(\mathbb{RP}^{\infty})$.
 - $\pi_1 = W_K$, the right-angled Coxeter group associated to $K^{(1)}$.
 - $H^*(\mathcal{Z}_K(\mathbb{RP}^\infty),\mathbb{Z}_2) = R/I_K$, where $R = \mathbb{Z}_2[x_1,\ldots,x_m]$, deg $x_i = 1$.
- $G = \mathbb{Z}$: Toric complex, $\mathcal{Z}_{\mathcal{K}}(S^1)$.
 - $\pi_1 = A_K$, the right-angled Artin group associated to $K^{(1)}$.
 - $H^*(\mathcal{Z}_K(S^1), \mathbb{Z}) = E/J_K$, where $E = \bigwedge [e_1, \ldots, e_m]$, deg $e_i = 1$.

Standard moment-angle complexes

- Complex moment-angle complex, $\mathcal{Z}_{\mathcal{K}}(D^2, S^1) \simeq \mathcal{Z}_{\mathcal{K}}(ES^1, S^1)$.
 - $\pi_1 = \pi_2 = \{1\}.$
 - $H^*(\mathcal{Z}_K(D^2, S^1), \mathbb{Z}) = \operatorname{Tor}^S(S/I_K, \mathbb{Z}).$
- Real moment-angle complex, $\mathcal{Z}_{\mathcal{K}}(D^1, S^0) \simeq \mathcal{Z}_{\mathcal{K}}(E\mathbb{Z}_2, \mathbb{Z}_2).$
 - $\pi_1 = W'_K$, the derived subgroup of W_K .
 - $H^*(\mathcal{Z}_K(D^1, S^0), \mathbb{Z}_2) = \operatorname{Tor}^R(R/I_K, \mathbb{Z}_2)$ only additively!

Example

Let *K* be a circuit on 4 vertices. Then $\mathcal{Z}_{K}(D^{2}, S^{1}) = S^{3} \times S^{3}$, while $\mathcal{Z}_{K}(D^{1}, S^{0}) = S^{1} \times S^{1}$ (embedded in the 4-cube).

Theorem (Bahri, Bendersky, Cohen, Gitler)

Let K a simplicial complex on m vertices. There is a natural homotopy equivalence

$$\Sigma(\mathcal{Z}_{\mathcal{K}}(X, A)) \simeq \Sigma\left(\bigvee_{I\subset[m]}\widehat{\mathcal{Z}}_{\mathcal{K}_{I}}(X, A)\right),$$

where K_I is the induced subcomplex of K on the subset $I \subset [m]$.

Corollary

If X is contractible and A is a discrete subspace consisting of p points, then

$$H_k(\mathcal{Z}_K(X, \boldsymbol{A}); \boldsymbol{R}) \cong \bigoplus_{I \subset [m]} \bigoplus_{1}^{(p-1)^{|I|}} \widetilde{H}_{k-1}(K_I; \boldsymbol{R}).$$

Finite abelian covers

- Let X be a connected, finite-type CW-complex, with $\pi = \pi_1(X, x_0)$.
- Let *p*: Y → X a (connected) regular cover, with group of deck transformations Γ. We then have a short exact sequence

$$1 \longrightarrow \pi_1(Y, y_0) \xrightarrow{\rho_{\sharp}} \pi_1(X, x_0) \xrightarrow{\nu} \Gamma \longrightarrow 1 .$$

- Conversely, every epimorphism $\nu \colon \pi \twoheadrightarrow \Gamma$ defines a regular cover $X^{\nu} \to X$ (unique up to equivalence), with $\pi_1(X^{\nu}) = \ker(\nu)$.
- If Γ is abelian, then ν = χ ∘ ab factors through the abelianization, while X^ν = X^χ is covered by the universal abelian cover of X:

Let C_q(X^ν; k) be the group of cellular *q*-chains on X^ν, with coefficients in a field k. We then have natural isomorphisms

 $C_q(X^{\nu}; \Bbbk) \cong C_q(X; \Bbbk\Gamma) \cong C_q(\widetilde{X}) \otimes_{\Bbbk\pi} \Bbbk\Gamma.$

Now suppose Γ is finite abelian, k = k
, and char k = 0. Then, all k-irreps of Γ are 1-dimensional, and so

$$C_q(X^{\nu}; \Bbbk) \cong \bigoplus_{\rho \in \mathsf{Hom}(\Gamma, \Bbbk^{\times})} C_q(X; \Bbbk_{\rho \circ \nu}),$$

where $\Bbbk_{\rho \circ \nu}$ denotes the field \Bbbk , viewed as a $\Bbbk \pi$ -module via the character $\rho \circ \nu \colon \pi \to \Bbbk^{\times}$.

• Thus, $H_q(X^{\nu}; \Bbbk) \cong \bigoplus_{\rho \in \operatorname{Hom}(\Gamma, \Bbbk^{\times})} H_q(X; \Bbbk_{\rho \circ \nu}).$

- Now let *P* be an *n*-dimensional, simple polytope with *m* facets, and set $K = K_{\partial P}$.
- Let $\chi: \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ be a characteristic matrix for *P*.
- Then $\ker(\chi) \cong \mathbb{Z}_2^{m-n}$ acts freely on $\mathcal{Z}_{\mathcal{K}}(D^1, S^0)$, with quotient the real quasi-toric manifold $N_{\mathcal{P}}(\chi)$.
- N_P(χ) comes equipped with an action of Z^m₂ / ker(χ) ≃ Zⁿ₂; the orbit space is P.
- Furthermore, Z_K(D¹, S⁰) is homotopy equivalent to the maximal abelian cover of Z_K(ℝP[∞]), corresponding to the sequence

$$1 \longrightarrow W'_K \longrightarrow W_K \xrightarrow{ab} \mathbb{Z}_2^m \longrightarrow 1$$
.

Thus, N_P(χ) is, up to homotopy, a regular Zⁿ₂-cover of Z_K(ℝℙ[∞]), corresponding to the sequence

$$1 \longrightarrow \pi_1(N_P(\chi)) \longrightarrow W_K \xrightarrow{\nu = \chi \circ \mathsf{ab}} \mathbb{Z}_2^n \longrightarrow 1$$

The homology of abelian covers of GDJ spaces

- Let *K* be a simplicial complex on *m* vertices.
- Identify $\pi_1(\mathcal{Z}_{\mathcal{K}}(B\mathbb{Z}_p))_{ab} = \mathbb{Z}_p^m$, generated by x_1, \ldots, x_m .
- Let $\lambda : \mathbb{Z}_p^m \to \mathbb{k}^{\times}$ be a character, $\operatorname{supp}(\lambda) = \{i \in [m] \mid \lambda(x_i) \neq 1\}$.
- Let K_{λ} be the induced subcomplex on vertex set supp (λ) .

Proposition

$$H_q(\mathcal{Z}_{\mathcal{K}}(B\mathbb{Z}_p); \Bbbk_{\lambda}) \cong \widetilde{H}_{q-1}(K_{\lambda}; \Bbbk).$$

Idea: The inclusion $\iota: (S^1, *) \hookrightarrow (B\mathbb{Z}_p, *)$ induces a cellular inclusion $\mathcal{Z}_K(\iota): T_K = \mathcal{Z}_K(S^1) \hookrightarrow \mathcal{Z}_K(B\mathbb{Z}_p)$. Moreover, $\phi: K_\lambda \hookrightarrow K$ induces a cellular inclusion $\mathcal{Z}_{\phi}: T_{K_\lambda} \hookrightarrow T_K$. Let $\bar{\lambda}: \mathbb{Z}^m \to \mathbb{Z}_p^m \xrightarrow{\lambda} \Bbbk^{\times}$. We then get (chain) retractions

$$C_q(\mathcal{Z}_{\mathcal{K}}(B\mathbb{Z}_p); \mathbb{k}_{\lambda}) \longrightarrow C_q(T_{\mathcal{K}_{\lambda}}; \mathbb{k}_{\bar{\lambda}}) \xrightarrow{\cong} \widetilde{C}_{q-1}(\mathcal{K}_{\lambda}; \mathbb{k})$$

 $C_q(T_K; \mathbb{k}_{\bar{\lambda}})$

This shows that $\dim_{\Bbbk} H_q(\mathcal{Z}_{\mathcal{K}}(B\mathbb{Z}_p); \Bbbk_{\lambda}) \ge \dim_{\Bbbk} \tilde{H}_{q-1}(\mathcal{K}_{\lambda}; \Bbbk)$. For the reverse inequality, we use [BBCG], which, in this case, says

$$H_q(\mathcal{Z}_{\mathcal{K}}(\mathcal{E}\mathbb{Z}_{\mathcal{P}},\mathbb{Z}_{\mathcal{P}});\mathbb{k}) \cong \bigoplus_{l\subset [m]} \bigoplus_{1\subset [m]}^{(\mathcal{P}-1)^{|l|}} \widetilde{H}_{q-1}(\mathcal{K}_l;\mathbb{k}),$$

and the fact that $\mathcal{Z}_{\mathcal{K}}(\mathbb{E}\mathbb{Z}_{p},\mathbb{Z}_{p}) \simeq (\mathcal{Z}_{\mathcal{K}}(\mathbb{B}\mathbb{Z}_{p}))^{\text{ab}}$, which gives $H_{q}(\mathcal{Z}_{\mathcal{K}}(\mathbb{E}\mathbb{Z}_{p},\mathbb{Z}_{p});\mathbb{k}) \cong \bigoplus_{\rho \in \text{Hom}(\mathbb{Z}_{p}^{m},\mathbb{k}^{\times})} H_{q}(\mathcal{Z}_{\mathcal{K}}(\mathbb{B}\mathbb{Z}_{p});\mathbb{k}_{p}).$

Theorem

Let *G* be a prime-order cyclic group, and let $\mathcal{Z}_{\mathcal{K}}(BG)^{\chi}$ be the abelian cover defined by an epimorphism $\chi: G^m \twoheadrightarrow \Gamma$. Then

$$H_q(\mathcal{Z}_{\mathcal{K}}(\mathcal{B}\mathcal{G})^{\chi};\Bbbk) \cong \bigoplus_{\rho \in \mathsf{Hom}(\Gamma;\Bbbk^{\times})} \widetilde{H}_{q-1}(\mathcal{K}_{\rho \circ \chi};\Bbbk),$$

where $K_{\rho \circ \chi}$ is the induced subcomplex of *K* on vertex set supp $(\rho \circ \chi)$.

The homology of real quasi-toric manifolds

- Let again *P* be a simple polytope, and set $K = K_{\partial P}$.
- Let $\chi: \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ be a characteristic matrix for *P*.
- Denote by $\chi_i \in \mathbb{Z}_2^m$ the *i*-th row of χ .
- For each subset $\overline{S} \subseteq [n]$, write $\chi_S = \sum_{i \in S} \chi_i \in \mathbb{Z}_2^m$.
- S also determines a character ρ_S: Zⁿ₂ → k[×], taking the *i*-th generator to −1 if *i* ∈ S, and to 1 if *i* ∉ S.
- Every $\rho \in \operatorname{Hom}(\mathbb{Z}_2^n, \mathbb{C}^{\times})$ arises as $\rho = \rho_S$, where $S = \operatorname{supp}(\rho)$.
- supp(ρ_S ∘ χ) consists of those j ∈ [m] for which the j-th entry of χ_S is non-zero.
- Let $K_{\chi,S}$ be the induced subcomplex on this vertex set.

Corollary

The Betti numbers of the real, quasi-toric manifold $N_P(\chi)$ are given by

$$b_q(N_P(\chi)) = \sum_{\mathcal{S}\subseteq [n]} \tilde{b}_{q-1}(K_{\chi,\mathcal{S}}).$$

Example

• Again, let *P* be the square, and $K = K_{\partial P}$ the 4-cycle.

• Let
$$T^2 = N_P(\chi)$$
, where $\chi = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.

• Compute:

S	Ø	{1}	{2}	{1,2}
χs	(0000)	(1010)	(0101)	(1111)
$\operatorname{supp}(\chi_{\mathcal{S}})$	Ø	{1,3}	{2, 4}	$\{1, 2, 3, 4\}$
<i>K</i> _{χ,S}	Ø	{ {1 }, {3 }}	$\{\{2\}, \{4\}\}$	K

• Thus:

$$\begin{split} b_0(T^2) &= \tilde{b}_{-1}(\emptyset) = 1, \\ b_1(T^2) &= \tilde{b}_0(K_{\chi,\{1\}}) + \tilde{b}_0(K_{\chi,\{2\}}) = 1 + 1 = 2, \\ b_2(T^2) &= \tilde{b}_1(K) = 1. \end{split}$$

18/22

Cup products in abelian covers of GDJ-spaces

As before, let $X^{\nu} \to X$ be a regular, finite abelian cover, corresponding to an epimorphism $\nu \colon \pi_1(X) \twoheadrightarrow \Gamma$, and let $\Bbbk = \mathbb{C}$. The cellular cochains on X^{ν} decompose as

$$C^q(X^{\nu}; \Bbbk) \cong \bigoplus_{\rho \in \mathsf{Hom}(\Gamma, \Bbbk^{\times})} C^q(X; \Bbbk_{\rho \circ \nu}),$$

The cup product map, $C^{p}(X^{\nu}, \Bbbk) \otimes_{\Bbbk} C^{q}(X^{\nu}, \Bbbk) \xrightarrow{\smile} C^{p+q}(X^{\nu}, \Bbbk)$, restricts to those pieces, as follows:

where μ^* is induced by the multiplication map on coefficients, and Δ^* is induced by a cellular approximation to the diagonal $\Delta: X \to X \times X$.

Proposition

Let $\mathcal{Z}_{\kappa}(B\mathbb{Z}_{p})^{\nu}$ be a regular abelian cover, with characteristic homomorphism $\chi: \mathbb{Z}_{p}^{m} \to \Gamma$. The cup product in

$$H^*(\mathcal{Z}_{\mathcal{K}}(BG)^{\nu};\Bbbk) \cong \bigoplus_{q=0}^{\infty} \left(\bigoplus_{\rho \in \mathsf{Hom}(\Gamma;\Bbbk^{\times})} \widetilde{H}^{q-1}(\mathcal{K}_{\rho \circ \chi};\Bbbk) \right)$$

is induced by the following maps on simplicial cochains:

$$\begin{split} \widetilde{C}^{p-1}(\mathcal{K}_{\rho\circ\chi}; \Bbbk^{\times}) \otimes \widetilde{C}^{q-1}(\mathcal{K}_{\rho'\circ\chi}; \Bbbk^{\times}) &\to \widetilde{C}^{p+q-1}(\mathcal{K}_{(\rho\otimes\rho')\circ\chi}; \Bbbk^{\times}) \\ \widehat{\sigma} \otimes \widehat{\tau} &\mapsto \begin{cases} \pm \widehat{\sigma \sqcup \tau} & \text{if } \sigma \cap \tau = \varnothing, \\ 0 & \text{otherwise,} \end{cases} \end{split}$$

where $\sigma \sqcup \tau$ is the simplex with vertex set the union of the vertex sets of σ and τ , and $\hat{\sigma}$ is the Kronecker dual of σ .

Formality properties

- A finite-type CW-complex X is *formal* if its Sullivan minimal model is quasi-isomorphic to (*H**(*X*, Q), 0)—roughly speaking, *H**(*X*, Q) determines the rational homotopy type of X.
- (Notbohm–Ray) If X is formal, then $\mathcal{Z}_{\mathcal{K}}(X)$ is formal.
- In particular, toric complexes $T_{K} = \mathcal{Z}_{K}(S^{1})$ and generalized Davis–Januszkiewicz spaces $\mathcal{Z}_{K}(BG)$ are always formal.
- (Félix, Tanré) More generally, if both X and A are formal, and the inclusion *i*: A → X induces a surjection *i**: H*(X, Q) → H*(A, Q), then Z_K(X, A) is formal.
- (Panov–Ray) Complex quasi-toric manifolds M_P(χ) are always formal.

• (Baskakov, Denham–A.S.) Moment angle complexes $\mathcal{Z}_{\mathcal{K}}(D^2, S^1)$ are not always formal: they can have non-zero Massey products.

- It follows that real moment-angle complexes Z_K(D¹, S⁰) are not always formal.
- Question: are real quasi-toric manifolds $N_P(\chi)$ formal?