MILNOR FIBRATIONS OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

Joint work with Stefan Papadima

arXiv:1401.0868

Banff FRG

April 20, 2014

ALEX SUCIU (NORTHEASTERN) MILNOR FIBRATIONS OF ARRANGEMENTS

THE MILNOR FIBRATION

- Let $f \in \mathbb{C}[z_0, \ldots, z_d]$ be a homogeneous polynomial of degree *n*.
- Let $V(f) = \{z \in \mathbb{C}^{d+1} \mid f(z) = 0\}$ and $M = \mathbb{C}^{d+1} \setminus V(f)$.
- The map $f: \mathbb{C}^{d+1} \to \mathbb{C}$ restricts to a map $f: M \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the (global) *Milnor fibration* of *f*.
- The typical fiber, $F = f^{-1}(1)$, is homotopic to a finite CW-complex of dim *d*. If *f* is not a proper power, then *F* is connected.
- The monodromy of the fibration: $h: F \to F, z \mapsto e^{2\pi i/n}z$.
- The algebraic monodromy: $h_q: H_q(F, \mathbb{C}) \to H_q(F, \mathbb{C})$.

- If *f* has an isolated critical point at 0, then $F \simeq \bigvee^{\mu} S^{d}$, where $\mu = (n-1)^{d+1}$.
- For instance, let $f = z_0^3 z_1^3$. Then *F* is a thrice-punctured torus (with *h* rotation by 120°), and $F \simeq \bigvee^4 S^1$:

- More generally, if $f = z_0^n z_1^n$, then *F* is a Riemann surface of genus $\binom{n-1}{2}$ with *n* punctures, and so $F \simeq \bigvee^{(n-1)^2} S^1$.
- If the singularity at 0 is non-isolated, though, the Betti numbers $b_q(F)$ and the algebraic monodromies h_q are hard to compute.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, and let $\pi = \pi_1(X, x_0)$.
- Let k be an algebraically closed field, and let Hom(π, k*) = H¹(X, k*) be the character group of π.
- The (degree 1) *characteristic varieties* of *X* are the jump loci for homology with coefficients in rank-1 local systems on *X*:

 $\mathcal{V}_{\boldsymbol{s}}(\boldsymbol{X}, \Bbbk) = \{ \rho \in \operatorname{Hom}(\pi, \Bbbk^*) \mid \dim_{\Bbbk} H_1(\boldsymbol{X}, \Bbbk_{\rho}) \geq \boldsymbol{s} \}.$

EXAMPLE (CIRCLE)

We have $\widetilde{S^1} = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{k}\mathbb{Z} = \mathbb{k}[t^{\pm 1}]$. Then:

$$C_*(\widetilde{S^1}, \Bbbk): 0 \longrightarrow \Bbbk[t^{\pm 1}] \xrightarrow{t-1} \Bbbk[t^{\pm 1}] \longrightarrow 0$$

For $\rho \in \operatorname{Hom}(\mathbb{Z}, \Bbbk^*) = \Bbbk^*$, we get

$$\mathcal{C}_*(\widetilde{S^1}, \Bbbk) \otimes_{\Bbbk \mathbb{Z}} \Bbbk_
ho: \ \mathbf{0} \longrightarrow \Bbbk \overset{
ho-1}{\longrightarrow} \Bbbk \longrightarrow \mathbf{0}$$
 ,

which is exact, except for $\rho = 1$, when $H_0(S^1, \Bbbk) = H_1(S^1, \Bbbk) = \Bbbk$. Hence: $\mathcal{V}_1(S^1, \Bbbk) = \{1\}$ and $\mathcal{V}_s(S^1, \Bbbk) = \emptyset$, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE) Identify $\pi_1(\mathbb{C}\setminus\{n \text{ points}\}) = F_n$, and $\text{Hom}(F_n, \mathbb{k}^*) = (\mathbb{k}^*)^n$. Then: $\mathcal{V}_s(\mathbb{C}\setminus\{n \text{ points}\}, \mathbb{k}) = \begin{cases} (\mathbb{k}^*)^n & \text{if } s < n, \\ \{1\} & \text{if } s = n, \\ \emptyset & \text{if } s > n. \end{cases}$

- Let $\pi: \mathbb{C}^{d+1} \setminus \{0\} \to \mathbb{CP}^d$ be the projection map, with fiber \mathbb{C}^* .
- This map restricts to $\pi: M \to U$, where $U = M/\mathbb{C}^* = \mathbb{CP}^d \setminus V(f)$.
- This map further restricts to a regular, \mathbb{Z}_n -cover $F \to U$.
- Assume *f* is square-free, and write $f = f_1 \cdots f_r$, with factors irreducible and distinct.
- Then the cover $F \to U$ is classified by the homomorphism $\delta: \pi_1(U) \twoheadrightarrow \mathbb{Z}_n$ that sends each meridian about $V(f_i)$ to deg (f_i) .
- Fix a field k, and let δ̂: Hom(Z_n, k*) → Hom(π₁(U), k*) be the induced homomorphism between character groups.

• If $char(k) \nmid n$, then

$$\dim_{\Bbbk} H_{1}(F, \Bbbk) = \sum_{s \ge 1} \left| \mathcal{V}_{s}(U, \Bbbk) \cap \operatorname{im}(\widehat{\delta}) \right|.$$

HYPERPLANE ARRANGEMENTS

- \mathcal{A} : A (central) arrangement of hyperplanes in \mathbb{C}^{d+1} .
- Intersection lattice: L(A).
- Complement: $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H.$
- The Boolean arrangement \mathcal{B}_n
 - \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
 - $L(\mathcal{B}_n)$: lattice of subsets of $\{0, 1\}^n$.
 - $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n$.
- The braid arrangement A_n (or, reflection arr. of type A_{n-1})
 - A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
 - $L(A_n)$: lattice of partitions of $[n] = \{1, ..., n\}$.
 - *M*(*A_n*): configuration space of *n* ordered points in ℂ (a classifying space for the pure braid group on *n* strings).

- *M* has the homotopy type of a connected, finite CW-complex of dimension *d* + 1. In fact, *M* admits a minimal cell structure.
- In particular, *H*_{*}(*M*, ℤ) is torsion-free. The Betti numbers
 b_q(*M*) := rank *H_q*(*M*, ℤ) are given by the Möbius function of *L*(*A*).
- The Orlik–Solomon algebra A = H^{*}(M, Z) is determined by L(A). but π₁(M) is not.

MILNOR FIBRATIONS OF ARRANGEMENTS

- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^{d+1} \to \mathbb{C}$ be a linear form with kernel H
- Let $Q(A) = \prod_{H \in A} f_H$, a homogeneous polynomial of degree *n*.
- This polynomial defines the Milnor fibration of A, with fiber F = F(A).

EXAMPLE

Let \mathcal{B}_n be the Boolean arrangement, with $Q = z_1 \cdots z_n$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and $F(\mathcal{B}_n) = \ker(\mathbb{Q}) \cong (\mathbb{C}^*)^{n-1}$.

- Let A be an arrangement of planes in C³. Its projectivization, A
 , is an arrangement of lines in CP².
- A flat X ∈ L₂(A) has multiplicity q if A_X = {H ∈ A | X ⊃ H} has size q, i.e., there are exactly q lines from Ā passing through X.

Question: Are the Betti numbers of F(A) and the characteristic polynomial of the algebraic monodromy determined by L(A)? Let

```
\Delta_{\mathcal{A}}(t) := \det(h_1 - t \cdot id). Then b_1(\mathcal{F}(\mathcal{A})) = \deg \Delta_{\mathcal{A}}.
```

THEOREM

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta_{\mathcal{A}}(t)$, and thus $b_1(F(\mathcal{A}))$, are combinatorially determined.

- We relate the cohomology jump loci of *M*(*A*) in characteristic *p* with those in characteristic 0.
- A key combinatorial ingredient is the notion of multinet.

RESONANCE VARIETIES AND THE β_p -invariants

- Let A = H*(M(A), k) an algebra that depends only on L(A) (and the field k).
- For each $a \in A^1$, we have $a^2 = 0$. Thus, we get a cochain complex, $(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{a} \cdots$
- The (degree 1) *resonance varieties* of *A* are the cohomology jump loci of this "Aomoto complex":

$$\mathcal{R}_{s}(\mathcal{A}, \Bbbk) = \{ a \in \mathcal{A}^{1} \mid \dim_{\Bbbk} \mathcal{H}^{1}(\mathcal{A}, \cdot a) \geq s \},\$$

In particular, a ∈ A¹ belongs to R₁(A, k) iff there is b ∈ A¹ not proportional to a, such that a ∪ b = 0 in A².

- Now assume k has characteristic p > 0.
- Let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$ be the "diagonal" vector, and define $\beta_{\rho}(\mathcal{A}) = \dim_{\Bbbk} H^1(\mathcal{A}, \cdot \sigma).$

That is, $\beta_{\rho}(\mathcal{A}) = \max\{s \mid \sigma \in \mathcal{R}^{1}_{s}(\mathcal{A}, \Bbbk)\}.$

• Clearly, $\beta_p(\mathcal{A})$ depends only on $L(\mathcal{A})$ and p. Moreover, $0 \leq \beta_p(\mathcal{A}) \leq |\mathcal{A}| - 2$.

THEOREM

If $L_2(\mathcal{A})$ has no flats of multiplicity 3r with r > 1, then $\beta_3(\mathcal{A}) \leq 2$.

- Let $\mathbf{k} = \mathbf{F}_{p^s}$ be a finite field different from \mathbf{F}_2 .
- Let M_k(m) be the simple matroid on k^m whose size 3 dependent subsets are all 3-tuples {v, v', v"} for which v + v' + v" = 0.
- $\mathcal{M}_{\Bbbk}(m)$ has rank 2 for m = 1, and rank 3 for m > 1. Moreover all 2-flats have multiplicity p^s .

THEOREM

- If k ≠ F₃, the matroids M_k(m) are non-realizable over C, for all m ≥ 2.
- If k = F₃, the matroids M_k(m) are non-realizable over C, for all m ≥ 3.
 - (2) follows from the Hirzebruch–Miyaoka–Yau inequality.
 - (3) is more subtle: it uses a result of Yuzvinsky on 3-nets.

The homology of the Milnor Fiber

• The monodromy $h: F(\mathcal{A}) \to F(\mathcal{A})$ has order $n = |\mathcal{A}|$. Thus,

$$\Delta_{\mathcal{A}}(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},$$

where $\Phi_1 = t - 1$, $\Phi_2 = t + 1$, $\Phi_3 = t^2 + t + 1$, $\Phi_4 = t^2 + 1$, ... are the cyclotomic polynomials, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

Easy to see: e₁(A) = n − 1. Hence, H₁(F(A), C), when viewed as a module over C[Z_n], decomposes as

$$(\mathbb{C}[t]/(t-1))^{n-1} \oplus \bigoplus_{1 < d \mid n} (\mathbb{C}[t]/\Phi_d(t))^{e_d(\mathcal{A})}.$$

• In particular, $b_1(F(A)) = n - 1 + \sum_{1 < d \mid n} \varphi(d) e_d(A)$.

- Thus, in degree 1, question (Q1) is equivalent to: are the integers *e_d*(*A*) determined by *L*_{≤2}(*A*)?
- Not all divisors of *n* appear in the above formulas: If *d* does not divide |A_X|, for some X ∈ L₂(A), then e_d(A) = 0 (Libgober).
- In particular, if $L_2(\mathcal{A})$ has only flats of multiplicity 2 and 3, then $\Delta_{\mathcal{A}}(t) = (t-1)^{n-1}(t^2+t+1)^{e_3}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_2} \cdot (t^2+1)^{e_4}$.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010) $e_{p^s}(\mathcal{A}) \leq \beta_p(\mathcal{A})$, for all $s \geq 1$.

THEOREM

Suppose $L_2(A)$ has no flats of multiplicity 3r, with r > 1. Then $e_3(A) = \beta_3(A)$, and thus $e_3(A)$ is combinatorially determined.

A similar result holds for $e_2(\mathcal{A})$ and $e_4(\mathcal{A})$, under some additional hypothesis.

COROLLARY

If \overline{A} is an arrangement of *n* lines in \mathbb{P}^2 with only double and triple points, then $\Delta_{\mathcal{A}}(t) = (t-1)^{n-1}(t^2+t+1)^{\beta_3(\mathcal{A})}$ is combinatorially determined.

COROLLARY (LIBGOBER 2012)

If \overline{A} is an arrangement of *n* lines in \mathbb{P}^2 with only double and triple points, then the question whether $\Delta_{\mathcal{A}}(t) = (t-1)^{n-1}$ or not is combinatorially determined.

CONJECTURE

Let \mathcal{A} be an arrangement of rank at least 3. Then

 $e_{p^s}(\mathcal{A}) = 0$

for all primes p and integers $s \ge 1$, with two possible exceptions:

 $e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A})$ and $e_3(\mathcal{A}) = \beta_3(\mathcal{A})$.

If $e_d(A) = 0$ for all divisors *d* of |A| which are not prime powers, this conjecture would give:

 $\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$

The conjecture has been verified for several classes of arrangements, including complex reflection arrangements and certain types of real arrangements.

MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A *multinet* on \mathcal{A} is a partition of the set \mathcal{A} into $k \ge 3$ subsets $\mathcal{A}_1, \ldots, \mathcal{A}_k$, together with an assignment of multiplicities, $m: \mathcal{A} \to \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_2(\mathcal{A})$, called the base locus, such that:

- **(1)** There is an integer *d* such that $\sum_{H \in A_{\alpha}} m_H = d$, for all $\alpha \in [k]$.
- ② If *H* and *H'* are in different classes, then $H \cap H' \in \mathcal{X}$.
- **③** For each *X* ∈ *X*, the sum $n_X = \sum_{H ∈ A_\alpha : H ⊃ X} m_H$ is independent of *α*.
- (Each set $(\bigcup_{H \in A_n} H) \setminus \mathcal{X}$ is connected.
 - A similar definition can be made for any (rank 3) matroid.
 - A multinet as above is also called a (*k*, *d*)-multinet, or a *k*-multinet.
 - The multinet is *reduced* if $m_H = 1$, for all $H \in A$.

MULTINETS

- A *net* is a reduced multinet with $n_X = 1$, for all $X \in \mathcal{X}$.
- In this case, $|A_{\alpha}| = |A| / k = d$, for all α .
- Moreover, $\bar{\mathcal{X}}$ has size d^2 , and is encoded by a (k-2)-tuple of orthogonal Latin squares.

A (3, 2)-net on the A₃ arrangement A (3, 4)-multinet on the B₃ arrangement $\bar{\mathcal{X}}$ consists of 4 triple points ($n_X = 1$) $\bar{\mathcal{X}}$ consists of 4 triple points ($n_X = 1$) and 3 triple points ($n_X = 2$)

MULTINETS

A (3, 3)-net on the Ceva matroid. A (4, 3)-net on the Hessian matroid.

- If A has no flats of multiplicity kr, for some r > 1, then every reduced k-multinet is a k-net.
- (Kawahara): given any Latin square, there is a matroid \mathcal{M} with a 3-net $(\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3)$ realizing it, such that each \mathcal{M}_{α} is uniform.
- (Yuzvinsky and Pereira–Yuz): If A supports a k-multinet with $|\mathcal{X}| > 1$, then k = 3 or 4; if the multinet is not reduced, then k = 3.
- (Wakefield & al): The only (4, 3)-net in CP² is the Hessian; there are no (4, 4), (4, 5), or (4, 6) nets in CP².
- Conjecture (Yuz): The only 4-multinet is the Hessian (4, 3)-net.
- (Torielli–Yoshinaga): There are no 4-nets on real arrangements.

Lemma

If A supports a 3-net with parts A_{α} , then:

- **1** $\leq \beta_3(\mathcal{A}) \leq \beta_3(\mathcal{A}_{\alpha}) + 1$, for all α .
- 2 If $\beta_3(\mathcal{A}_{\alpha}) = 0$, for some α , then $\beta_3(\mathcal{A}) = 1$.
- (3) If $\beta_3(\mathcal{A}_{\alpha}) = 1$, for some α , then $\beta_3(\mathcal{A}) = 1$ or 2.

All possibilities do occur:

- Braid arrangement: has a (3, 2)-net from the Latin square of \mathbb{Z}_2 . $\beta_3(\mathcal{A}_{\alpha}) = 0$ ($\forall \alpha$) and $\beta_3(\mathcal{A}) = 1$.
- Pappus arrangement: has a (3,3)-net from the Latin square of \mathbb{Z}_3 . $\beta_3(\mathcal{A}_1) = \beta_3(\mathcal{A}_2) = 0, \beta_3(\mathcal{A}_3) = 1 \text{ and } \beta_3(\mathcal{A}) = 1.$
- Ceva arrangement: has a (3, 3)-net from the Latin square of \mathbb{Z}_3 . $\beta_3(\mathcal{A}_{\alpha}) = 1$ ($\forall \alpha$) and $\beta_3(\mathcal{A}) = 2$.

COMPLEX COHOMOLOGY JUMP LOCI

Let \mathcal{A} be an arrangement in \mathbb{C}^3 . Work of Arapura, Falk, Cohen–S., Libgober–Yuz, Falk–Yuz completely describes the varieties $\mathcal{R}_s(\mathcal{A}, \mathbb{C})$:

- $\mathcal{R}_1(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in $H^1(M(\mathcal{A}), \mathbb{C}) = \mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- $\mathcal{R}_s(\mathcal{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least s + 1.

- Each flat X ∈ L₂(A) of multiplicity k ≥ 3 gives rise to a *local* component of R₁(A, C), of dimension k − 1.
- More generally, every *k*-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension k 1, and all components of $\mathcal{R}_1(\mathcal{A}, \mathbb{C})$ arise in this way.
- Note: the varieties R₁(A, k) with char(k) > 0 can be more complicated: components may be non-linear, and they may intersect non-transversely.

THEOREM

Suppose $L_2(\mathcal{A})$ has no flats of multiplicity 3r, with r > 1. Then $\mathcal{R}_1(\mathcal{A}, \mathbb{C})$ has at least $(3^{\beta_3(\mathcal{A})} - 1)/2$ essential components, all corresponding to 3-nets.

Work of Arapura, Libgober, Cohen–S., S., Libgober–Yuz, Falk–Yuz, Dimca, Dimca–Papadima–S., Artal–Cogolludo–Matei, Budur–Wang ... provides a fairly explicit description of the varieties $\mathcal{V}_{s}(\mathcal{A}, \mathbb{C})$:

- Each variety V_s(A, C) is a finite union of torsion-translates of algebraic subtori of (C^{*})ⁿ.
- If a linear subspace L ⊂ Cⁿ is a component of R_s(A, C), then the algebraic torus T = exp(L) is a component of V_s(A, C).
- Moreover, $T = f^*(H^1(S, \mathbb{C}^*))$, where $f: M(\mathcal{A}) \to S$ is an orbifold fibration, with base $S = \mathbb{CP}^1 \setminus \{k \text{ points}\}$, for some $k \ge 3$.
- All components of V_s(A, C) passing through the origin 1 ∈ (C*)ⁿ arise in this way (and thus, are combinatorially determined).

THEOREM

If \mathcal{A} admits a reduced *k*-multinet, then $e_k(\mathcal{A}) \ge k - 2$.

MAIN THEOREM

THEOREM

Suppose $L_2(\mathcal{A})$ has no flats of multiplicity 3r with r > 1. Then TFAE:

- ① $L_{\leq 2}(A)$ admits a reduced 3-multinet.
- 2 $L_{\leq 2}(A)$ admits a 3-net.
- $\ \, {\boldsymbol{\Im}} \ \, {\boldsymbol{\beta}}_{3}({\mathcal{A}}) \neq {\boldsymbol{0}}.$

Moreover, $\beta_3(\mathcal{A}) \leq 2$ and $\beta_3(\mathcal{A}) = e_3(\mathcal{A})$.

- (2) \Rightarrow (1): obvious.
- (1) \Rightarrow (4): by above theorem.
- (4) \Rightarrow (3): by modular bound $e_p(\mathcal{A}) \leq \beta_p(\mathcal{A})$.
- (3) \Rightarrow (2): relate resonance and nets.
- $\beta_3(\mathcal{A}) \leq 2$: a previous theorem.
- Last assertion: put things together.