MiLnor fibrations of hyperplane ARRANGEMENTS

Alex Suciu

Northeastern University
Joint work with Stefan Papadima
arXiv:1401.0868

Banff FRG

April 20, 2014

The Milnor fibration

- Let $f \in \mathbb{C}\left[z_{0}, \ldots, z_{d}\right]$ be a homogeneous polynomial of degree n.
- Let $V(f)=\left\{z \in \mathbb{C}^{d+1} \mid f(z)=0\right\}$ and $M=\mathbb{C}^{d+1} \backslash V(f)$.
- The map $f: \mathbb{C}^{d+1} \rightarrow \mathbb{C}$ restricts to a map $f: M \rightarrow \mathbb{C}^{*}$.
- This is the projection of a smooth, locally trivial bundle, known as the (global) Milnor fibration of f.
- The typical fiber, $F=f^{-1}(1)$, is homotopic to a finite CW-complex of $\operatorname{dim} d$. If f is not a proper power, then F is connected.
- The monodromy of the fibration: $h: F \rightarrow F, z \mapsto e^{2 \pi i / n} z$.
- The algebraic monodromy: $h_{q}: H_{q}(F, C) \rightarrow H_{q}(F, C)$.
- If f has an isolated critical point at 0 , then $F \simeq \bigvee^{\mu} S^{d}$, where $\mu=(n-1)^{d+1}$.
- For instance, let $f=z_{0}^{3}-z_{1}^{3}$. Then F is a thrice-punctured torus (with h rotation by 120°), and $F \simeq \bigvee^{4} S^{1}$:

- More generally, if $f=z_{0}^{n}-z_{1}^{n}$, then F is a Riemann surface of genus $\binom{n-1}{2}$ with n punctures, and so $F \simeq \bigvee^{(n-1)^{2}} S^{1}$.
- If the singularity at 0 is non-isolated, though, the Betti numbers $b_{q}(F)$ and the algebraic monodromies h_{q} are hard to compute.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, and let $\pi=\pi_{1}\left(X, x_{0}\right)$.
- Let \mathbb{k} be an algebraically closed field, and let $\operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right)=H^{1}\left(X, \mathbb{k}^{*}\right)$ be the character group of π.
- The (degree 1) characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems on X :

$$
\mathcal{V}_{s}(X, \mathbb{k})=\left\{\rho \in \operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right) \mid \operatorname{dim}_{\mathbb{k}} H_{1}\left(X, \mathbb{k}_{\rho}\right) \geqslant s\right\} .
$$

Example (Circle)

We have $\widetilde{S^{1}}=\mathbb{R}$. Identify $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}=\langle t\rangle$ and $\mathbb{k} \mathbb{Z}=\mathbb{k}\left[t^{ \pm 1}\right]$. Then:

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{k}\right): 0 \longrightarrow \mathbb{k}\left[t^{ \pm 1}\right] \xrightarrow{t-1} \mathbb{k}\left[t^{ \pm 1}\right] \longrightarrow 0 .
$$

For $\rho \in \operatorname{Hom}\left(\mathbb{Z}, \mathbb{k}^{*}\right)=\mathbb{k}^{*}$, we get

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{k}\right) \otimes_{\mathbb{k} \mathbb{Z}} \mathbb{k}_{\rho}: 0 \longrightarrow \mathbb{k} \xrightarrow{\rho-1} \mathbb{k} \longrightarrow 0
$$

which is exact, except for $\rho=1$, when $H_{0}\left(S^{1}, \mathbb{k}\right)=H_{1}\left(S^{1}, \mathbb{k}\right)=\mathbb{k}$. Hence: $\mathcal{V}_{1}\left(S^{1}, \mathbb{k}\right)=\{1\}$ and $\mathcal{V}_{S}\left(S^{1}, \mathbb{k}\right)=\varnothing$, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify $\pi_{1}(\mathbb{C} \backslash\{n$ points $\})=F_{n}$, and $\operatorname{Hom}\left(F_{n}, \mathbb{k}^{*}\right)=\left(\mathbb{k}^{*}\right)^{n}$. Then:

$$
\mathcal{V}_{s}(\mathbb{C} \backslash\{n \text { points }\}, \mathbb{k})= \begin{cases}\left(\mathbb{k}^{*}\right)^{n} & \text { if } s<n \\ \{1\} & \text { if } s=n \\ \varnothing & \text { if } s>n\end{cases}
$$

- Let $\pi: \mathbb{C}^{d+1} \backslash\{0\} \rightarrow \mathbb{C P}^{d}$ be the projection map, with fiber \mathbb{C}^{*}.
- This map restricts to $\pi: M \rightarrow U$, where $U=M / \mathbb{C}^{*}=\mathbb{C P}^{d} \backslash V(f)$.
- This map further restricts to a regular, \mathbb{Z}_{n}-cover $F \rightarrow U$.
- Assume f is square-free, and write $f=f_{1} \ldots f_{r}$, with factors irreducible and distinct.
- Then the cover $F \rightarrow U$ is classified by the homomorphism $\delta: \pi_{1}(U) \rightarrow \mathbb{Z}_{n}$ that sends each meridian about $V\left(f_{i}\right)$ to $\operatorname{deg}\left(f_{i}\right)$.
- Fix a field \mathbb{k}, and let $\hat{\delta}: \operatorname{Hom}\left(\mathbb{Z}_{n}, \mathbb{k}^{*}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(U), \mathbb{k}^{*}\right)$ be the induced homomorphism between character groups.
- If $\operatorname{char}(\mathbb{k}) \nmid n$, then

$$
\operatorname{dim}_{\mathbb{k}} H_{1}(F, \mathbb{k})=\sum_{s \geqslant 1}\left|\mathcal{V}_{s}(U, \mathbb{k}) \cap \operatorname{im}(\hat{\delta})\right| .
$$

Hyperplane arrangements

- A: A (central) arrangement of hyperplanes in \mathbb{C}^{d+1}.
- Intersection lattice: $L(\mathcal{A})$.
- Complement: $M(\mathcal{A})=\mathbb{C}^{\ell} \bigcup_{H \in \mathcal{A}} H$.
- The Boolean arrangement \mathcal{B}_{n}
- \mathcal{B}_{n} : all coordinate hyperplanes $z_{i}=0$ in \mathbb{C}^{n}.
- $L\left(\mathcal{B}_{n}\right)$: lattice of subsets of $\{0,1\}^{n}$.
- $M\left(\mathcal{B}_{n}\right)$: complex algebraic torus $\left(\mathbb{C}^{*}\right)^{n}$.
- The braid arrangement \mathcal{A}_{n} (or, reflection arr. of type A_{n-1})
- \mathcal{A}_{n} : all diagonal hyperplanes $z_{i}-z_{j}=0$ in \mathbb{C}^{n}.
- $L\left(\mathcal{A}_{n}\right)$: lattice of partitions of $[n]=\{1, \ldots, n\}$.
- $M\left(\mathcal{A}_{n}\right)$: configuration space of n ordered points in \mathbb{C} (a classifying space for the pure braid group on n strings).

- M has the homotopy type of a connected, finite CW-complex of dimension $d+1$. In fact, M admits a minimal cell structure.
- In particular, $H_{*}(M, \mathbb{Z})$ is torsion-free. The Betti numbers $b_{q}(M):=\operatorname{rank} H_{q}(M, \mathbb{Z})$ are given by the Möbius function of $L(\mathcal{A})$.
- The Orlik-Solomon algebra $A=H^{*}(M, \mathbb{Z})$ is determined by $L(\mathcal{A})$. but $\pi_{1}(M)$ is not.

Milnor fibrations of arrangements

- For each $H \in \mathcal{A}$, let $f_{H}: \mathbb{C}^{d+1} \rightarrow \mathbb{C}$ be a linear form with kernel H
- Let $Q(\mathcal{A})=\prod_{H \in \mathcal{A}} f_{H}$, a homogeneous polynomial of degree n.
- This polynomial defines the Milnor fibration of \mathcal{A}, with fiber $F=F(\mathcal{A})$.

EXAMPLE

Let \mathcal{B}_{n} be the Boolean arrangement, with $Q=z_{1} \cdots z_{n}$. Then $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$ and $F\left(\mathcal{B}_{n}\right)=\operatorname{ker}(\mathbb{Q}) \cong\left(\mathbb{C}^{*}\right)^{n-1}$.

- Let \mathcal{A} be an arrangement of planes in \mathbb{C}^{3}. Its projectivization, $\overline{\mathcal{A}}$, is an arrangement of lines in $\mathbb{C P}^{2}$.
- A flat $X \in L_{2}(\mathcal{A})$ has multiplicity q if $\mathcal{A}_{X}=\{H \in \mathcal{A} \mid X \supset H\}$ has size q, i.e., there are exactly q lines from $\overline{\mathcal{A}}$ passing through \bar{X}.

Question: Are the Betti numbers of $F(\mathcal{A})$ and the characteristic polynomial of the algebraic monodromy determined by $L(\mathcal{A})$? Let
$\Delta_{\mathcal{A}}(t):=\operatorname{det}\left(h_{1}-t \cdot \mathrm{id}\right)$. Then $b_{1}(F(\mathcal{A}))=\operatorname{deg} \Delta_{\mathcal{A}}$.
THEOREM
Suppose all flats $X \in L_{2}(\mathcal{A})$ have multiplicity 2 or 3 . Then $\Delta_{\mathcal{A}}(t)$, and thus $b_{1}(F(\mathcal{A}))$, are combinatorially determined.

- We relate the cohomology jump loci of $M(\mathcal{A})$ in characteristic p with those in characteristic 0.
- A key combinatorial ingredient is the notion of multinet.

RESONANCE VARIETIES AND THE β_{p}-INVARIANTS

- Let $A=H^{*}(M(\mathcal{A}), \mathbb{k})$ - an algebra that depends only on $L(\mathcal{A})$ (and the field \mathbb{k}).
- For each $a \in A^{1}$, we have $a^{2}=0$. Thus, we get a cochain complex, $(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2}$ \qquad
- The (degree 1) resonance varieties of \mathcal{A} are the cohomology jump loci of this "Aomoto complex":

$$
\mathcal{R}_{s}(\mathcal{A}, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot a) \geqslant s\right\}
$$

- In particular, $a \in A^{1}$ belongs to $\mathcal{R}_{1}(\mathcal{A}, \mathbb{k})$ iff there is $b \in A^{1}$ not proportional to a, such that $a \cup b=0$ in A^{2}.
- Now assume \mathbb{k} has characteristic $p>0$.
- Let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$ be the "diagonal" vector, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma)
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.

- Clearly, $\beta_{p}(\mathcal{A})$ depends only on $L(\mathcal{A})$ and p. Moreover, $0 \leqslant \beta_{p}(\mathcal{A}) \leqslant|\mathcal{A}|-2$.

THEOREM

If $L_{2}(\mathcal{A})$ has no flats of multiplicity $3 r$ with $r>1$, then $\beta_{3}(\mathcal{A}) \leqslant 2$.

- Let $\mathbb{k}=F_{p^{s}}$ be a finite field different from F_{2}.
- Let $\mathcal{M}_{\mathbb{k}}(m)$ be the simple matroid on \mathbb{k}^{m} whose size 3 dependent subsets are all 3-tuples $\left\{v, v^{\prime}, v^{\prime \prime}\right\}$ for which $v+v^{\prime}+v^{\prime \prime}=0$.
- $\mathcal{M}_{\mathbb{k}}(m)$ has rank 2 for $m=1$, and rank 3 for $m>1$. Moreover all 2-flats have multiplicity p^{s}.

Theorem

(1) $\beta_{p}\left(\mathcal{M}_{\mathbb{k}}(m)\right) \geqslant m$, while $\beta_{3}\left(\mathcal{M}_{\mathrm{F}_{3}}(m)\right)=m$, for all $m \geqslant 1$.
(2) If $\mathbb{k} \neq \mathrm{F}_{3}$, the matroids $\mathcal{M}_{\mathbb{k}}(m)$ are non-realizable over \mathbb{C}, for all $m \geqslant 2$.
(3) If $\mathbb{k}=F_{3}$, the matroids $\mathcal{M}_{\mathbb{k}}(m)$ are non-realizable over \mathbb{C}, for all $m \geqslant 3$.

- (2) follows from the Hirzebruch-Miyaoka-Yau inequality.
- (3) is more subtle: it uses a result of Yuzvinsky on 3-nets.

The homology of the Milnor fiber

- The monodromy $h: F(\mathcal{A}) \rightarrow F(\mathcal{A})$ has order $n=|\mathcal{A}|$. Thus,

$$
\Delta_{\mathcal{A}}(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})}
$$

where $\Phi_{1}=t-1, \Phi_{2}=t+1, \Phi_{3}=t^{2}+t+1, \Phi_{4}=t^{2}+1, \ldots$ are the cyclotomic polynomials, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

- Easy to see: $e_{1}(\mathcal{A})=n-1$. Hence, $H_{1}(F(\mathcal{A}), \mathbb{C})$, when viewed as a module over $\mathbb{C}\left[\mathbb{Z}_{n}\right]$, decomposes as

$$
(\mathbb{C}[t] /(t-1))^{n-1} \oplus \underset{1<d \mid n}{\oplus}\left(\mathbb{C}[t] / \Phi_{d}(t)\right)^{e_{d}(\mathcal{A})}
$$

- In particular, $b_{1}(F(\mathcal{A}))=n-1+\sum_{1<d \mid n} \varphi(d) e_{d}(\mathcal{A})$.
- Thus, in degree 1, question (Q1) is equivalent to: are the integers $e_{d}(\mathcal{A})$ determined by $L_{\leqslant 2}(\mathcal{A})$?
- Not all divisors of n appear in the above formulas: If d does not divide $\left|\mathcal{A}_{X}\right|$, for some $X \in L_{2}(\mathcal{A})$, then $e_{d}(\mathcal{A})=0$ (Libgober).
- In particular, if $L_{2}(\mathcal{A})$ has only flats of multiplicity 2 and 3 , then $\Delta_{\mathcal{A}}(t)=(t-1)^{n-1}\left(t^{2}+t+1\right)^{e_{3}}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010)
$e_{p^{s}}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$, for all $s \geqslant 1$.

THEOREM

Suppose $L_{2}(\mathcal{A})$ has no flats of multiplicity $3 r$, with $r>1$. Then $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$, and thus $e_{3}(\mathcal{A})$ is combinatorially determined.

A similar result holds for $e_{2}(\mathcal{A})$ and $e_{4}(\mathcal{A})$, under some additional hypothesis.

Corollary

If $\overline{\mathcal{A}}$ is an arrangement of n lines in \mathbb{P}^{2} with only double and triple points, then $\Delta_{\mathcal{A}}(t)=(t-1)^{n-1}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})}$ is combinatorially determined.

COROLLARY (LibGOBER 2012)

If $\overline{\mathcal{A}}$ is an arrangement of n lines in \mathbb{P}^{2} with only double and triple points, then the question whether $\Delta_{\mathcal{A}}(t)=(t-1)^{n-1}$ or not is combinatorially determined.

CONJECTURE

Let \mathcal{A} be an arrangement of rank at least 3 . Then

$$
e_{p^{s}}(\mathcal{A})=0
$$

for all primes p and integers $s \geqslant 1$, with two possible exceptions:

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A}) \text { and } e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})
$$

If $e_{d}(\mathcal{A})=0$ for all divisors d of $|\mathcal{A}|$ which are not prime powers, this conjecture would give:

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathcal{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})} .
$$

The conjecture has been verified for several classes of arrangements, including complex reflection arrangements and certain types of real arrangements.

MULTinets

DEFINITION (FALK AND YUZVINSKY)

A multinet on \mathcal{A} is a partition of the set \mathcal{A} into $k \geqslant 3$ subsets $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$, together with an assignment of multiplicities, $m: \mathcal{A} \rightarrow \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_{2}(\mathcal{A})$, called the base locus, such that:
(1) There is an integer d such that $\sum_{H \in \mathcal{A}_{\alpha}} m_{H}=d$, for all $\alpha \in[k]$.
(2) If H and H^{\prime} are in different classes, then $H \cap H^{\prime} \in \mathcal{X}$.
(3) For each $X \in \mathcal{X}$, the sum $n_{X}=\sum_{H \in \mathcal{A}_{\alpha}: H \supset X} m_{H}$ is independent of α.
(4) Each set $\left(\cup_{H \in \mathcal{A}_{\alpha}} H\right) \backslash \mathcal{X}$ is connected.

- A similar definition can be made for any (rank 3) matroid.
- A multinet as above is also called a (k, d)-multinet, or a k-multinet.
- The multinet is reduced if $m_{H}=1$, for all $H \in \mathcal{A}$.
- A net is a reduced multinet with $n_{X}=1$, for all $X \in \mathcal{X}$.
- In this case, $\left|\mathcal{A}_{\alpha}\right|=|\mathcal{A}| / k=d$, for all α.
- Moreover, $\overline{\mathcal{X}}$ has size d^{2}, and is encoded by a $(k-2)$-tuple of orthogonal Latin squares.

$\mathrm{A}(3,2)$-net on the A_{3} arrangement $\mathrm{A}(3,4)$-multinet on the B_{3} arrangement $\overline{\mathcal{X}}$ consists of 4 triple points $\left(n_{X}=1\right) \quad \overline{\mathcal{X}}$ consists of 4 triple points $\left(n_{X}=1\right)$ and 3 triple points $\left(n_{X}=2\right)$

A (3, 3)-net on the Ceva matroid. A $(4,3)$-net on the Hessian matroid.

- If \mathcal{A} has no flats of multiplicity $k r$, for some $r>1$, then every reduced k-multinet is a k-net.
- (Kawahara): given any Latin square, there is a matroid \mathcal{M} with a 3-net $\left(\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}\right)$ realizing it, such that each \mathcal{M}_{α} is uniform.
- (Yuzvinsky and Pereira-Yuz): If \mathcal{A} supports a k-multinet with $|\mathcal{X}|>1$, then $k=3$ or 4 ; if the multinet is not reduced, then $k=3$.
- (Wakefield \& al): The only $(4,3)$-net in $\mathbb{C P}^{2}$ is the Hessian; there are no $(4,4),(4,5)$, or $(4,6)$ nets in $\mathbb{C P}^{2}$.
- Conjecture (Yuz): The only 4-multinet is the Hessian (4,3)-net.
- (Torielli-Yoshinaga): There are no 4-nets on real arrangements.

LEMMA

If \mathcal{A} supports a 3-net with parts \mathcal{A}_{α}, then:
(1) $1 \leqslant \beta_{3}(\mathcal{A}) \leqslant \beta_{3}\left(\mathcal{A}_{\alpha}\right)+1$, for all α.
(2) If $\beta_{3}\left(\mathcal{A}_{\alpha}\right)=0$, for some α, then $\beta_{3}(\mathcal{A})=1$.
(3) If $\beta_{3}\left(\mathcal{A}_{\alpha}\right)=1$, for some α, then $\beta_{3}(\mathcal{A})=1$ or 2 .

All possibilities do occur:

- Braid arrangement: has a (3,2)-net from the Latin square of \mathbb{Z}_{2}. $\beta_{3}\left(\mathcal{A}_{\alpha}\right)=0(\forall \alpha)$ and $\beta_{3}(\mathcal{A})=1$.
- Pappus arrangement: has a $(3,3)$-net from the Latin square of \mathbb{Z}_{3}. $\beta_{3}\left(\mathcal{A}_{1}\right)=\beta_{3}\left(\mathcal{A}_{2}\right)=0, \beta_{3}\left(\mathcal{A}_{3}\right)=1$ and $\beta_{3}(\mathcal{A})=1$.
- Ceva arrangement: has a $(3,3)$-net from the Latin square of \mathbb{Z}_{3}. $\beta_{3}\left(\mathcal{A}_{\alpha}\right)=1(\forall \alpha)$ and $\beta_{3}(\mathcal{A})=2$.

COMPLEX COHOMOLOGY JUMP LOCI

Let \mathcal{A} be an arrangement in \mathbb{C}^{3}. Work of Arapura, Falk, Cohen-S., Libgober-Yuz, Falk-Yuz completely describes the varieties $\mathcal{R}_{s}(\mathcal{A}, \mathbb{C})$:

- $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in $H^{1}(M(\mathcal{A}), \mathbb{C})=\mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- $\mathcal{R}_{s}(\mathcal{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least $s+1$.
- Each flat $X \in L_{2}(\mathcal{A})$ of multiplicity $k \geqslant 3$ gives rise to a local component of $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$, of dimension $k-1$.
- More generally, every k-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension $k-1$, and all components of $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$ arise in this way.
- Note: the varieties $\mathcal{R}_{1}(\mathcal{A}, \mathbb{k})$ with $\operatorname{char}(\mathbb{k})>0$ can be more complicated: components may be non-linear, and they may intersect non-transversely.

THEOREM

Suppose $L_{2}(\mathcal{A})$ has no flats of multiplicity $3 r$, with $r>1$. Then $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$ has at least $\left(3^{\beta_{3}(\mathcal{A})}-1\right) / 2$ essential components, all corresponding to 3-nets.

Work of Arapura, Libgober, Cohen-S., S., Libgober-Yuz, Falk-Yuz, Dimca, Dimca-Papadima-S., Artal-Cogolludo-Matei, Budur-Wang ... provides a fairly explicit description of the varieties $\mathcal{V}_{s}(\mathcal{A}, \mathbb{C})$:

- Each variety $\mathcal{V}_{S}(\mathcal{A}, \mathbb{C})$ is a finite union of torsion-translates of algebraic subtori of $\left(\mathbb{C}^{*}\right)^{n}$.
- If a linear subspace $L \subset \mathbb{C}^{n}$ is a component of $\mathcal{R}_{s}(\mathcal{A}, \mathbb{C})$, then the algebraic torus $T=\exp (L)$ is a component of $\mathcal{V}_{s}(\mathcal{A}, \mathbb{C})$.
- Moreover, $T=f^{*}\left(H^{1}\left(S, \mathbb{C}^{*}\right)\right)$, where $f: M(\mathcal{A}) \rightarrow S$ is an orbifold fibration, with base $S=\mathbb{C P}{ }^{1} \backslash\{k$ points $\}$, for some $k \geqslant 3$.
- All components of $\mathcal{V}_{s}(\mathcal{A}, \mathbb{C})$ passing through the origin $1 \in\left(\mathbb{C}^{*}\right)^{n}$ arise in this way (and thus, are combinatorially determined).

THEOREM

If \mathcal{A} admits a reduced k-multinet, then $e_{k}(\mathcal{A}) \geqslant k-2$.

MAIN THEOREM

THEOREM

Suppose $L_{2}(\mathcal{A})$ has no flats of multiplicity $3 r$ with $r>1$. Then TFAE:
(1) $L_{\leqslant 2}(\mathcal{A})$ admits a reduced 3-multinet.
(2) $L_{\leqslant 2}(\mathcal{A})$ admits a 3-net.
(3) $\beta_{3}(\mathcal{A}) \neq 0$.
(4) $e_{3}(\mathcal{A}) \neq 0$.

Moreover, $\beta_{3}(\mathcal{A}) \leqslant 2$ and $\beta_{3}(\mathcal{A})=e_{3}(\mathcal{A})$.

- $(2) \Rightarrow(1)$: obvious.
- $(1) \Rightarrow(4)$: by above theorem.
- $(4) \Rightarrow(3)$: by modular bound $e_{p}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$.
- $(3) \Rightarrow(2)$: relate resonance and nets.
- $\beta_{3}(\mathcal{A}) \leqslant 2$: a previous theorem.
- Last assertion: put things together.

