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RESONANCE AND PROPAGATION COHOMOLOGY JUMP LOCI

COHOMOLOGY JUMP LOCI

Let k be an algebraically closed field.

Let S be a commutative, finitely-generated k-algebra.

Let Spec(S) = Homk-alg(S, k) be the maximal spectrum of S.

Let

C : 0 // C0 // ¨ ¨ ¨ // C i di // C i+1 // ¨ ¨ ¨ // Cn // 0

be a (bounded) cochain complex over S.

The cohomology jump loci of C are defined as

V i(C) := tm P Spec(S) | H i(C bS S/m) ‰ 0u.
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RESONANCE AND PROPAGATION PROPAGATION

PROPAGATION

The sets V i(C) depend only on the chain-homotopy equivalence
class of C.

Assume C is a cochain complex of free, finitely-generated
S-modules. Then V i(C) are Zariski closed subsets of Spec(S).

We say the jump loci of C propagate if

V i´1(P) Ď V i(P) for 0 ă i ď n.
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RESONANCE AND PROPAGATION THE BGG CORRESPONDENCE

THE BGG CORRESPONDENCE

Let V be a finite-dimensional k-vector space.

Fix basis e1, . . . ,en for V , and dual basis x1, . . . , xn for V_.

Let E =
Ź

V and S = Sym V_.

Let P be a finitely-generated, graded E-module.
E.g., a graded, graded-commutative k-algebra A (chark ‰ 2).

BGG yields a cochain complex of free, finitely-generated
S-modules,

L(P) : ¨ ¨ ¨ // P i bk S
di // P i+1 bk S // ¨ ¨ ¨ ,

with differentials di(pb s) =
řn

j=1 ejpb xjs.
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RESONANCE AND PROPAGATION RESONANCE VARIETIES

RESONANCE VARIETIES

Evaluating L(P) at a P V gives the (Aomoto) cochain complex

(P,a) := L(P)bS S/ma : ¨ ¨ ¨ // P i ¨a // P i+1 // ¨ ¨ ¨

The resonance varieties of P are the cohomology jump loci of
L(P):

Ri(P) := V i(L(P)) = ta P V | H i(P,a) ‰ 0u.

They are closed cones inside the affine space V = Spec(S).
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RESONANCE AND PROPAGATION PROPAGATION OF RESONANCE

PROPAGATION OF RESONANCE

THEOREM (EISENBUD–POPESCU–YUZVINSKY 2003)

Let A be the Orlik–Solomon algebra of an arrangement. Then the
resonance varieties of A propagate.

Using similar techniques, we obtain the following generalization.

THEOREM (DSY)

Suppose the k-dual module, pP, has a linear free resolution over E.
Then the resonance varieties of P propagate.
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DUALITY AND PROPAGATION JUMP LOCI OF SPACES

JUMP LOCI OF SPACES

Let X be a connected, finite CW-complex.

Fundamental group π = π1(X , x0): a finitely generated, discrete
group, with πab – H1(X ,Z).

Let S = k[πab] and identify Spec(S) with the character group
Hom(π,k˚) = H1(X ,k˚).

The characteristic varieties of X are the cohomology jump loci of
the free S-cochain complex C = C˚(X ab,k):

V i(X ,k) = tρ P H1(X ,k˚) | H i(X , kρ) ‰ 0u.

The resonance varieties of X are the jump loci associated to the
cohomology algebra A = H˚(X ,k):

Ri(X ,k) = ta P H1(X , k) | H i(A,a) ‰ 0u.
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DUALITY AND PROPAGATION DUALITY SPACES

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we
start by recalling a notion due to Bieri and Eckmann (1978).

X is a duality space of dimension n if H i(X ,Zπ) = 0 for i ‰ n and
Hn(X ,Zπ) ‰ 0 and torsion-free.

Let D = Hn(X ,Zπ) be the dualizing Zπ-module. Given any
Zπ-module A, we have H i(X ,A) – Hn´i(X ,D bA).

If X = K (π,1), then π is a duality group. If, furthermore, D = Z,
with trivial Zπ-action, then π is a Poincaré duality group.
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DUALITY AND PROPAGATION ABELIAN DUALITY SPACES

ABELIAN DUALITY SPACES

We introduce an analogous notion, by replacing π  πab.

X is an abelian duality space of dimension n if H i(X ,Zπab) = 0
for i ‰ n and Hn(X ,Zπab) ‰ 0 and torsion-free.

Let B = Hn(X ,Zπab) be the dualizing Zπab-module. Given any
Zπab-module A, we have H i(X ,A) – Hn´i(X ,B bA).

There are duality spaces which are not abelian duality spaces
(e.g., Riemann surfaces of genus g ą 1), and the other way
around, too.
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DUALITY AND PROPAGATION ABELIAN DUALITY SPACES

PROPAGATION OF JUMP LOCI

THEOREM

Let X be an abelian duality space of dimension n. If ρ : π1(X )Ñ k˚
satisfies H i(X ,kρ) ‰ 0, then H j(X ,kρ) ‰ 0, for all i ď j ď n.

Consequences:
The characteristic varieties propagate: V1(X ,k) Ď ¨ ¨ ¨ Ď Vn(X , k).
dimk H1(X ,k) ě n´ 1.
If n ě 2, then H i(X , k) ‰ 0, for all 0 ď i ď n.

THEOREM

If, moreover, X admits a minimal cell structure, then the resonance
varieties also propagate: R1(X , k) Ď ¨ ¨ ¨ Ď Rn(X ,k).
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DUALITY AND PROPAGATION HYPERPLANE ARRANGEMENTS

HYPERPLANE ARRANGEMENTS

Let A be a complex hyperplane arrangement, of rank n.

Its complement, M(A), has the homotopy type of a minimal
CW-complex of dimension n.

THEOREM (DAVIS, JANUSZKIEWICZ, LEARY, OKUN 2011)

M(A) is a duality space of dimension n.

THEOREM (DSY)

M(A) is an abelian duality space of dimension n.

COROLLARY

The characteristic and resonance varieties of M(A) propagate.
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DUALITY AND PROPAGATION TORIC COMPLEXES

TORIC COMPLEXES

Let L be simplicial complex on n vertices.

The toric complex TL is the subcomplex of the n-torus obtained by
deleting the cells corresponding to the missing simplices of L.

By construction, TL is a minimal CW-complex, of dimension
dim L + 1.

πΓ := π1(TL) is the right-angled Artin group associated to the
graph Γ = L(1).

K (πΓ,1) = T∆Γ , where ∆Γ is the flag complex of Γ.

H˚(TL, k) = E/JL is the exterior Stanley–Reisner ring of L.
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DUALITY AND PROPAGATION TORIC COMPLEXES

L is Cohen–Macaulay if for each simplex σ P L, the reduced
cohomology of lk(σ) is concentrated in degree dim(L)´ |σ| and is
torsion-free.

THEOREM (N. BRADY–MEIER 2001, JENSEN–MEIER 2005)

A right-angled Artin group πΓ is a duality group if and only if ∆Γ is
Cohen–Macaulay. Moreover, πΓ is a Poincaré duality group if and only
if Γ is a complete graph.

THEOREM (DSY)

TL is an abelian duality space (of dimension dim(L) + 1) if and only if
L is Cohen-Macaulay.

ALEX SUCIU (NORTHEASTERN) DUALITY AND RESONANCE BALTIMORE, JAN. 14, 2014 13 / 14
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