ABELIAN DUALITY AND PROPAGATION OF RESONANCE

Alex Suciu

Northeastern University

Joint work with Graham Denham and Sergey Yuzvinsky

Special Session

Hyperplane Arrangements and Applications

Joint Mathematics Meetings, Baltimore January 14, 2014

ALEX SUCIU (NORTHEASTERN)

DUALITY AND RESONANCE

BALTIMORE, JAN. 14, 2014 1 / 14

COHOMOLOGY JUMP LOCI

- Let k be an algebraically closed field.
- Let S be a commutative, finitely-generated k-algebra.
- Let $\text{Spec}(S) = \text{Hom}_{\Bbbk\text{-alg}}(S, \Bbbk)$ be the maximal spectrum of S.
- Let

$$C: 0 \longrightarrow C^0 \longrightarrow \cdots \longrightarrow C^i \xrightarrow{d_i} C^{i+1} \longrightarrow \cdots \longrightarrow C^n \longrightarrow 0$$

be a (bounded) cochain complex over S.

• The cohomology jump loci of C are defined as

 $\mathcal{V}^{i}(\mathcal{C}) := \{ \mathfrak{m} \in \operatorname{Spec}(\mathcal{S}) \mid H^{i}(\mathcal{C} \otimes_{\mathcal{S}} \mathcal{S}/\mathfrak{m}) \neq 0 \}.$

ALEX SUCIU (NORTHEASTERN)

PROPAGATION

- The sets *Vⁱ*(*C*) depend only on the chain-homotopy equivalence class of *C*.
- Assume C is a cochain complex of free, finitely-generated S-modules. Then Vⁱ(C) are Zariski closed subsets of Spec(S).
- We say the jump loci of *C propagate* if

 $\mathcal{V}^{i-1}(\mathcal{P}) \subseteq \mathcal{V}^i(\mathcal{P}) \qquad \text{for } 0 < i \leq n.$

THE BGG CORRESPONDENCE

- Let V be a finite-dimensional k-vector space.
- Fix basis e_1, \ldots, e_n for V, and dual basis x_1, \ldots, x_n for V^{\vee} .
- Let $E = \bigwedge V$ and $S = \text{Sym } V^{\vee}$.
- Let *P* be a finitely-generated, graded *E*-module.
 E.g., a graded, graded-commutative k-algebra *A* (char k ≠ 2).
- BGG yields a cochain complex of free, finitely-generated S-modules,

$$\mathsf{L}(P): \cdots \longrightarrow P^{i} \otimes_{\Bbbk} S \xrightarrow{d_{i}} P^{i+1} \otimes_{\Bbbk} S \longrightarrow \cdots,$$

with differentials $d_i(p \otimes s) = \sum_{j=1}^n e_j p \otimes x_j s$.

RESONANCE VARIETIES

• Evaluating L(P) at $a \in V$ gives the (Aomoto) cochain complex

 $(P, a) := \mathbf{L}(P) \otimes_{S} S/\mathfrak{m}_{a}: \cdots \longrightarrow P^{i} \xrightarrow{a} P^{i+1} \longrightarrow \cdots$

• The resonance varieties of *P* are the cohomology jump loci of L(P): $\mathcal{R}^{i}(P) := \mathcal{V}^{i}(L(P)) = \{a \in V \mid H^{i}(P, a) \neq 0\}.$

They are closed cones inside the affine space V = Spec(S).

ALEX SUCIU (NORTHEASTERN)

PROPAGATION OF RESONANCE

THEOREM (EISENBUD–POPESCU–YUZVINSKY 2003)

Let A be the Orlik–Solomon algebra of an arrangement. Then the resonance varieties of A propagate.

Using similar techniques, we obtain the following generalization.

THEOREM (DSY)

Suppose the \Bbbk -dual module, \hat{P} , has a linear free resolution over E. Then the resonance varieties of P propagate.

ALEX SUCIU (NORTHEASTERN)

DUALITY AND RESONANCE

JUMP LOCI OF SPACES

- Let X be a connected, finite CW-complex.
- Fundamental group π = π₁(X, x₀): a finitely generated, discrete group, with π_{ab} ≃ H₁(X, Z).
- Let $S = \Bbbk[\pi_{ab}]$ and identify Spec(S) with the character group $Hom(\pi, \Bbbk^*) = H^1(X, \Bbbk^*)$.
- The characteristic varieties of X are the cohomology jump loci of the free S-cochain complex C = C*(X^{ab}, k):

$$\mathcal{V}^{i}(\boldsymbol{X}, \Bbbk) = \{ \rho \in H^{1}(\boldsymbol{X}, \Bbbk^{*}) \mid H^{i}(\boldsymbol{X}, \Bbbk_{\rho}) \neq \mathbf{0} \}.$$

The resonance varieties of X are the jump loci associated to the cohomology algebra A = H^{*}(X, k):

$$\mathcal{R}^{i}(X, \Bbbk) = \{ a \in \mathcal{H}^{1}(X, \Bbbk) \mid \mathcal{H}^{i}(A, a) \neq 0 \}.$$

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we start by recalling a notion due to Bieri and Eckmann (1978).

- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $X = K(\pi, 1)$, then π is a duality group. If, furthermore, $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then π is a Poincaré duality group.

ABELIAN DUALITY SPACES

We introduce an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.

- X is an *abelian duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- There are duality spaces which are not abelian duality spaces (e.g., Riemann surfaces of genus g > 1), and the other way around, too.

ALEX SUCIU (NORTHEASTERN)

PROPAGATION OF JUMP LOCI

THEOREM

Let X be an abelian duality space of dimension n. If $\rho : \pi_1(X) \to \Bbbk^*$ satisfies $H^i(X, \Bbbk_\rho) \neq 0$, then $H^j(X, \Bbbk_\rho) \neq 0$, for all $i \leq j \leq n$.

Consequences:

- The characteristic varieties propagate: $\mathcal{V}^1(X, \Bbbk) \subseteq \cdots \subseteq \mathcal{V}^n(X, \Bbbk)$.
- dim_k $H^1(X, \mathbb{k}) \ge n-1$.
- If $n \ge 2$, then $H^i(X, \Bbbk) \ne 0$, for all $0 \le i \le n$.

THEOREM

If, moreover, *X* admits a minimal cell structure, then the resonance varieties also propagate: $\mathcal{R}^1(X, \Bbbk) \subseteq \cdots \subseteq \mathcal{R}^n(X, \Bbbk)$.

ALEX SUCIU (NORTHEASTERN)

DUALITY AND RESONANCE

BALTIMORE, JAN. 14, 2014 10 / 14

HYPERPLANE ARRANGEMENTS

- Let \mathcal{A} be a complex hyperplane arrangement, of rank n.
- Its complement, *M*(*A*), has the homotopy type of a minimal CW-complex of dimension *n*.

THEOREM (DAVIS, JANUSZKIEWICZ, LEARY, OKUN 2011) M(A) is a duality space of dimension *n*.

THEOREM (DSY)

 $M(\mathcal{A})$ is an abelian duality space of dimension n.

COROLLARY

The characteristic and resonance varieties of $M(\mathcal{A})$ propagate.

ALEX SUCIU (NORTHEASTERN)

DUALITY AND RESONANCE

TORIC COMPLEXES

- Let *L* be simplicial complex on *n* vertices.
- The *toric complex T_L* is the subcomplex of the *n*-torus obtained by deleting the cells corresponding to the missing simplices of *L*.
- By construction, *T_L* is a minimal CW-complex, of dimension dim *L* + 1.
- $\pi_{\Gamma} := \pi_1(T_L)$ is the *right-angled Artin group* associated to the graph $\Gamma = L^{(1)}$.
- $K(\pi_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the *flag complex* of Γ .
- $H^*(T_L, \Bbbk) = E/J_L$ is the exterior Stanley–Reisner ring of L.

 L is Cohen–Macaulay if for each simplex σ ∈ L, the reduced cohomology of lk(σ) is concentrated in degree dim(L) – |σ| and is torsion-free.

THEOREM (N. BRADY-MEIER 2001, JENSEN-MEIER 2005)

A right-angled Artin group π_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay. Moreover, π_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

THEOREM (DSY)

 T_L is an abelian duality space (of dimension dim(L) + 1) if and only if L is Cohen-Macaulay.

REFERENCES

Graham Denham, Alexander I. Suciu, and Sergey Yuzvinsky, *Combinatorial covers and vanishing cohomology*, preprint, 2013.

Graham Denham, Alexander I. Suciu, and Sergey Yuzvinsky, *Abelian duality and propagation of resonance*, preprint, 2013.