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Characteristic varieties and Σ-invariants Characteristic varieties

Characteristic varieties
• X connected CW-complex with finite k -skeleton (k ≥ 1)
• G = π1(X , x0): a finitely generated group
• Hom(G,C×) character variety

Definition
For 0 ≤ i ≤ k and d > 0, set

V i
d (X ) = {ρ ∈ Hom(G,C×) | dimC Hi(X ,Cρ) ≥ d},

where Cρ is the rank 1 local system defined by ρ, i.e, C viewed as a
module over ZG, via g · x = ρ(g)x , and Hi(X ,Cρ) = Hi(C∗(X̃ )⊗ZG Cρ).

For each i , get stratification Hom(G,C×) ⊇ V i
1 ⊇ V i

2 ⊇ · · ·
Note: at ρ = 1, Hi(X ,Cρ) = Hi(X ,C). Thus,

1 ∈ V i
1(X )⇐⇒ bi(X ) 6= 0

Note: Vd (X ) = V1
d (X ) depends only on G. Write it as Vd (G).
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Characteristic varieties and Σ-invariants Characteristic varieties

Example (Circle)

We have S̃1 = R.
Identify π1(S1, ∗) = Z = 〈t〉 and ZZ = Z[t±1]. Then:

C∗(S̃1) : 0 // Z[t±1]
t−1 // Z[t±1] // 0

For ρ ∈ Hom(Z,C×) = C×, get

C∗(S̃1)⊗ZZ Cρ : 0 // C
ρ−1 // C // 0

which is exact, except for ρ = 1, when H0(S1,C) = H1(S1,C) = C.
Hence:

V0
1 (S1) = V1

1 (S1) = {1}
V i

d (S1) = ∅, otherwise.
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Characteristic varieties and Σ-invariants Characteristic varieties

Example (Torus)
Identify π1(T n) = Zn, and Hom(Zn,C×) = (C×)n. Then:

V i
d (T n) =

{
{1} if d ≤

(n
i

)
,

∅ otherwise.

Example (Wedge of circles)

Identify π1(
∨n S1) = Fn, and Hom(Fn,C×) = (C×)n. Then:

V1
d
( n∨

S1) =

(C×)n if d < n,
{1} if d = n,
∅ if d > n.

Example (Orientable surface of genus g > 1)

V1
d (Σg) =

(C×)2g if d < 2g − 1,
{1} if d = 2g − 1,2g,
∅ if d > 2g.
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Characteristic varieties and Σ-invariants Characteristic varieties

Alexander polynomial
G = π1(X , x0)

X ab p−→ X maximal torsion-free abelian cover, defined by
G ab−→ H = H1(G)/tors ∼= Zn

AG = H1(X ab,p−1(x0); Z) Alex. module / ZH ∼= Z[t±1
1 , . . . , t±1

n ]
∆G = gcd(E1(AG))

Proposition (Dimca–Papadima–S.)
V̌1(G) \ {1} = V (∆G) \ {1},

where
V̌1(G) = union of codim. 1 components of V1(G) ∩ Hom(G,C×)0

V (∆G) = hypersurface in Hom(G,C×)0 defined by ∆G.

Example

Let K be a non-trivial knot, G = π1(S3 \ K ). Then:
V1(G) = {z ∈ C | ∆G(z) = 0} ∪ {1}.
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Characteristic varieties and Σ-invariants Tangent cones

Tangent cones and exponential tangent cones

The homomorphism C→ C×, z 7→ ez induces

exp : Hom(G,C)→ Hom(G,C×), exp(0) = 1

Let W = V (I) be a Zariski closed subset in Hom(G,C×).

Definition
The tangent cone at 1 to W :

TC1(W ) = V (in(I))

The exponential tangent cone at 1 to W :

τ1(W ) = {z ∈ Hom(G,C) | exp(tz) ∈W , ∀t ∈ C}
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Characteristic varieties and Σ-invariants Tangent cones

Both types of tangent cones
are homogeneous subvarieties of Hom(G,C)

are non-empty iff 1 ∈W
depend only on the analytic germ of W at 1
commute with finite unions and arbitrary intersections

Moreover,
τ1(W ) ⊆ TC1(W )

I = if all irred components of W are subtori
I 6= in general

τ1(W ) is a finite union of rationally defined subspaces
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Characteristic varieties and Σ-invariants Bieri–Neumann–Strebel–Renz invariants

Bieri–Neumann–Strebel–Renz invariants

G finitely generated group C(G) Cayley graph.
χ : G→ R homomorphism Cχ(G) induced subgraph on vertex set
Gχ = {g ∈ G | χ(g) ≥ 0}.

Definition
Σ1(G) = {χ ∈ Hom(G,R) \ {0} | Cχ(G) is connected}

An open, conical subset of Hom(G,R) = H1(G,R), independent of
choice of generating set for G.

Definition

Σk (G,Z) = {χ ∈ Hom(G,R) \ {0} | the monoid Gχ is of type FPk}

Here, G is of type FPk if there is a projective ZG-resolution P• → Z,
with Pi finitely generated for all i ≤ k .
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Characteristic varieties and Σ-invariants Bieri–Neumann–Strebel–Renz invariants

The BNSR invariants Σq(G,Z) form a descending chain of open
subsets of Hom(G,R) \ {0}.
Σk (G,Z) 6= ∅ =⇒ G is of type FPk .
Σ1(G,Z) = Σ1(G).
The Σ-invariants control the finiteness properties of normal
subgroups N /G with G/N is abelian:

N is of type FPk ⇐⇒ S(G,N) ⊆ Σk (G,Z)

where S(G,N) = {χ ∈ Hom(G,R) \ {0} | χ(N) = 0}.
In particular:

ker(χ : G� Z) is f.g.⇐⇒ {±χ} ⊆ Σ1(G)
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Characteristic varieties and Σ-invariants Bieri–Neumann–Strebel–Renz invariants

Let X be a connected CW-complex with finite 1-skeleton, G = π1(X ).

Definition

The Novikov-Sikorav completion of ZG:

ẐGχ =
{
λ ∈ ZG | {g ∈ suppλ | χ(g) < c} is finite, ∀c ∈ R

}
ẐGχ is a ring, contains ZG as a subring =⇒ ẐGχ is a ZG-module.

Definition

Σq(X ,Z) = {χ ∈ Hom(G,R) \ {0} | Hi(X , ẐG−χ) = 0, ∀ i ≤ q}

Bieri: G of type FPk =⇒ Σq(G,Z) = Σq(K (G,1),Z), ∀q ≤ k .
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Characteristic varieties and Σ-invariants Tangent cone bound

Exponential tangent cone upper bound

Theorem (Papadima–S.)
If X has finite k-skeleton, then, for every q ≤ k,

Σq(X ,Z) ⊆
(
τR

1
( ⋃

i≤q

V i
1(X )

)){

. (*)

Thus: Each Σ-invariant is contained in the complement of a union of
rationally defined subspaces. Bound is sharp:

Example
Let G be a finitely generated nilpotent group. Then

Σq(G,Z) = Hom(G,R) \ {0}, V q
1 (G) = {1}, ∀q

and so (*) holds as an equality.
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Resonance varieties and the tangent cone theorem Resonance varieties

Resonance varieties
Let X be a connected CW-complex with finite k -skeleton (k ≥ 1).
Let A = H∗(X ,C). Then: a ∈ A1 ⇒ a2 = 0. Thus, get cochain complex

(A, ·a) : A0 a // A1 a // A2 // · · ·

Definition

The resonance varieties of X are the algebraic sets

Ri
d (X ) = {a ∈ A1 | dimk H i(A,a) ≥ d},

defined for all integers 0 ≤ i ≤ k and d > 0.

Ri
d are homogeneous subvarieties of A1 = H1(X ,C)

Ri
1 ⊇ Ri

2 ⊇ · · · ⊇ Ri
bi +1 = ∅, where bi = bi(X ).

Rd (X ) = R1
d (X ) depends only on G = π1(X ). Write as Rd (G).
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Resonance varieties and the tangent cone theorem Resonance varieties

Equivalent definition:

Rd (X ) =

{
a ∈ H1(X ,C)

∣∣∣∣ ∃ subspace W ⊂ H1(X ,C) such that
dim W = d + 1 and a ∪W = 0

}
In particular, 0 6= a ∈ H1(X ,C) belongs to R1(X ) iff there is b ∈ H1(X )
not proportional to a, such that a ∪ b = 0 in H2(X ).

Example
R1(T n) = {0}, for all n > 0.
R1(

∨n S1) = Cn, for all n > 1.
R1(Σg) = C2g , for all g > 1.

Theorem (Libgober 2002)

TC1(V i
d (X )) ⊆ Ri

d (X )

Equality does not hold in general (Matei–S. 2002)
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Resonance varieties and the tangent cone theorem Formality

Formality

Definition
1 A group G is 1-formal if its Malcev Lie algebra, mG = Prim(Q̂G), is

quadratic.
2 A space X is formal if its minimal model is quasi-isomorphic to

(H∗(X ,Q),0).

X formal =⇒ π1(X ) is 1-formal.
X1, X2 formal =⇒ X1 × X2 and X1 ∨ X2 are formal
G1, G2 1-formal =⇒ G1 ×G2 and G1 ∗G2 are 1-formal
M1, M2 formal, closed n-manifolds =⇒ M1#M2 formal
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Resonance varieties and the tangent cone theorem Tangent cone theorem

Tangent cone theorem

Theorem (Dimca–Papadima–S.)

If G is 1-formal, then exp : (Rd (G),0)
'−→ (Vd (G,C),1). Hence

τ1(Vd (G)) = TC1(Vd (G)) = Rd (G)

In particular, Rd (G) is a union of rationally defined linear subspaces in
H1(G,C) = Hom(G,C).

Example

Let G = 〈x1, x2, x3, x4 | [x1, x2], [x1, x4][x−2
2 , x3], [x−1

1 , x3][x2, x4]〉. Then

R1(G) = {x ∈ C4 | x2
1 − 2x2

2 = 0}

splits into subspaces over R but not over Q. Thus, G is not 1-formal.
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Resonance varieties and the tangent cone theorem Tangent cone theorem

Example

X = F (Σg ,n): the configuration space of n labeled points of a
Riemann surface of genus g (a smooth, quasi-projective variety).
π1(X ) = Pg,n: the pure braid group on n strings on Σg .

Using computation of H∗(F (Σg ,n),C) by Totaro (1996), get

R1(P1,n) =

{
(x , y) ∈ Cn × Cn

∣∣∣∣ ∑n
i=1 xi =

∑n
i=1 yi = 0,

xiyj − xjyi = 0, for 1 ≤ i < j < n

}
For n ≥ 3, this is an irreducible, non-linear variety (a rational normal
scroll). Hence, P1,n is not 1-formal.
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Resonance varieties and the tangent cone theorem Resonance bound

Resonance upper bound
Corollary

Suppose exp : (Ri
1(X ),0)

'−→ (V i
1(X ),1), for i ≤ q. Then:

Σq(X ,Z) ⊆
(⋃

i≤q

Ri
1(X ,R)

){

.

Corollary

Suppose G is a 1-formal group. Then Σ1(G) ⊆ R1(G,R){.
In particular, if R1(G,R) = H1(G,R), then Σ1(G) = ∅.

Example

The above inclusion may be strict: Let G = 〈a,b | aba−1 = b2〉.
Then G is 1-formal, Σ1(G) = (−∞,0), yet R1(G,R) = {0}.
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Applications Kaehler groups

Kähler manifolds and Kähler groups
Definition
A compact, connected, complex manifold M is called a Kähler manifold
if M admits a Hermitian metric h for which the imaginary part ω = =(h)
is a closed 2-form.

Examples: Riemann surfaces, CPn, and, more generally, smooth,
complex projective varieties.

Definition
A group G is a Kähler group if G = π1(M), for some compact Kähler
manifold M.

G is projective if M is actually a smooth projective variety.

G finite⇒ G is a projective group (Serre 1958).
G1,G2 Kähler groups⇒ G1 ×G2 is a Kähler group
G Kähler group, H < G finite-index subgroup⇒ H is a Kähler gp
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Applications Kaehler groups

Problem (J.-P. Serre 1958)
Which finitely presented groups are Kähler (or projective) groups?

The Kähler condition puts strong restrictions on M:

1 H∗(M,Z) admits a Hodge structure
2 Hence, the odd Betti numbers of M are even
3 M is formal (Deligne–Griffiths–Morgan–Sullivan 1975)

The Kähler condition also puts strong restrictions on G = π1(M):

1 b1(G) is even
2 G is 1-formal
3 G cannot split non-trivially as a free product (Gromov 1989)

Alex Suciu (Northeastern University) Cohomology jumping loci University at Albany, Dec. 2009 20 / 34



Applications Kaehler groups

Quasi-Kähler manifolds
Definition
A manifold X is called quasi-Kähler if X = X \ D, where X is Kähler
and D is a divisor with normal crossings.

Smooth quasi-projective varieties (e.g., complements of
hypersurfaces in CPn) are quasi-Kähler manifolds.
A finitely-presented group G is called a quasi-Kähler group if there
a quasi-Kähler manifold X with G = π1(X ).
X = CPn \ {hyperplane arrangement} ⇒ X is formal

(Brieskorn 1973)
X quasi-projective, W1(H1(X ,C)) = 0⇒ π1(X ) is 1-formal

(Morgan 1978)
X = CPn \ {hypersurface} ⇒ π1(X ) is 1-formal

(Kohno 1983)
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Applications Kaehler groups

Theorem (Arapura 1997)

Let G be a quasi-Kähler group. Then

V1(G) =
⋃
α

ραTα

where Tα is an algebraic subtorus of Hom(G,C×) and ρα is a
finite-order character.

Theorem (Dimca–Papadima–S.)

Let G be a quasi-Kähler group, and ∆G its Alexander polynomial.
If b1(G) 6= 2, then the Newton polytope of ∆G is a line segment.
If G is actually a Kähler group, then ∆G

.
= const.
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Applications Kaehler groups

Resonance varieties of quasi-Kähler manifolds

Theorem (Dimca–Papadima–S.)
Let X be a quasi-Kähler manifold, and G = π1(X ). Let {Lα}α be the
non-zero irred components of R1(G). If G is 1-formal, then

1 Each Lα is a linear subspace of H1(G,C).

2 Each Lα is p-isotropic (i.e., restriction of ∪G to Lα has rank p), with
dim Lα ≥ 2p + 2, for some p = p(α) ∈ {0,1}.

3 If α 6= β, then Lα ∩ Lβ = {0}.
4 Rd (G) = {0} ∪

⋃
α:dim Lα>d+p(α) Lα.

Furthermore,
4 If X is compact, then G is 1-formal, and each Lα is 1-isotropic.
5 If W1(H1(X ,C)) = 0, then G is 1-formal, and each Lα is

0-isotropic.
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Applications Kaehler groups

Σ-invariants
Let X be a quasi-Kähler manifold, G = π1(X ).

Theorem (Papadima–S.)

1 Σ1(G) ⊆ TCR
1 (V1

1 (G)){.

2 If X is Kähler, or W1(H1(X ,C)) = 0, then R1(G,R) is a finite union
of rationally defined linear subspaces, and Σ1(G) ⊆ R1(G,R){.

Example

Assumption from (2) is necessary. E.g., let X be the complex
Heisenberg manifold: bundle C× → X → (C×)2 with e = 1. Then:

1 X is a smooth quasi-projective variety;
2 G = π1(X ) is nilpotent (and not 1-formal);
3 Σ1(G) = R2 \ {0} and R1(G,R) = R2.

Thus, Σ1(G) 6⊆ R1(G,R){.
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Applications Toric complexes

Toric complexes and right-angled Artin groups
L simplicial complex on n vertices toric complex TL
(subcomplex of T n obtained by deleting the cells corresponding to
the missing simplices of L).
π1(TL) is the right-angled Artin group associated to graph Γ = L(1):

GΓ = 〈v ∈ V (Γ) | vw = wv if {v ,w} ∈ E(Γ)〉.

K (GΓ,1) = T∆Γ
, where ∆Γ is the flag complex of Γ.

H∗(TL,Z) is the exterior Stanley-Reisner ring of L, with generators
the duals v∗, and relations the monomials corresponding to the
missing simplices of L.
TL is formal, and so GΓ is 1-formal.

Example

Γ = K n ⇒ GΓ = Fn

Γ = Kn ⇒ GΓ = Zn

Γ = Γ′
∐

Γ′′ ⇒ GΓ = GΓ′ ∗GΓ′′

Γ = Γ′ ∗ Γ′′ ⇒ GΓ = GΓ′ ×GΓ′′
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Applications Toric complexes

Identify H1(TL,C) = CV, the C-vector space with basis {v | v ∈ V}.

Theorem (Papadima–S.)

Ri
d (TL) =

⋃
W⊂VP

σ∈LV\W
dimC eHi−1−|σ|(lkLW

(σ),C)≥d

CW,

where LW is the subcomplex induced by L on W, and lkK (σ) is the link
of a simplex σ in a subcomplex K ⊆ L.

In particular:
R1(GΓ) =

⋃
W⊆V

ΓW disconnected

CW.
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Applications Toric complexes

Similar formula holds for V i
d (TL), with CW replaced by (C×)W. Hence:

exp : (Ri
d (TL),0)

'−→ (V i
d (TL),1).

Using (1) resonance upper bound, and (2) computation of Σk (GΓ,Z)
by Meier, Meinert, VanWyk (1998), we get:

Corollary (Papadima-S.)

Σk (TL,Z) ⊆
( ⋃

i≤k

Ri
1(TL,R)

){

Σk (GΓ,Z) =
( ⋃

i≤k

Ri
1(T∆Γ

,R)
){
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Applications Toric complexes

Example

Γ =
1��	�
�� 2��	�
�� 3��	�
�� 4��	�
��

Maximal disconnected subgraphs: Γ{134} and Γ{124}. Thus:

R1(GΓ) = C{134} ∪ C{124}.

Note that: C{134} ∩ C{124} = C{14} 6= {0}
Since GΓ is 1-formal⇒ GΓ is not a quasi-Kähler group.

Theorem (Dimca–Papadima–S.)

The following are equivalent:

1 GΓ is a quasi-Kähler group
2 Γ = Kn1,...,nr := K n1 ∗ · · · ∗ K nr

3 GΓ = Fn1 × · · · × Fnr

1 GΓ is a Kähler group
2 Γ = K2r

3 GΓ = Z2r

Alex Suciu (Northeastern University) Cohomology jumping loci University at Albany, Dec. 2009 28 / 34



Applications Toric complexes

Bestvina–Brady groups
NΓ = ker(ν : GΓ � Z), where ν(v) = 1, for all v ∈ V (Γ).

Theorem (Dimca–Papadima–S.)

The following are equivalent:

1 NΓ is a quasi-Kähler group
2 Γ is either a tree, or Γ = Kn1,...,nr , with

some ni = 1, or all ni ≥ 2 and r ≥ 3.

1 NΓ is a Kähler group
2 Γ = K2r+1

3 NΓ = Z2r

Example (answers a question of J. Kollár)
Γ = K2,2,2  GΓ = F2 × F2 × F2  NΓ = the Stallings group
NΓ is finitely presented, but rank H3(NΓ,Z) =∞, so NΓ not FP3.
Also, NΓ = π1(C2 \ {an arrangement of 5 lines}).
Thus, NΓ is a quasi-projective group which is not commensurable
(even up to finite kernels) to any group π having a finite K (π,1).
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Applications 3-manifolds

3-manifolds

Question (Donaldson–Goldman 1989, Reznikov 1993)
Which 3-manifold groups are Kähler groups?

Reznikov (2002) and Hernández-Lamoneda (2001) gave partial
solutions.

Theorem (Dimca–S.)

Let G be the fundamental group of a closed 3-manifold. Then G is a
Kähler group⇐⇒ G is a finite subgroup of O(4), acting freely on S3.

Idea of proof: compare the resonance varieties of (orientable)
3-manifolds to those of Kähler manifolds.
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Applications 3-manifolds

Proposition

Let M be a closed, orientable 3-manifold. Then:
1 H1(M,C) is not 1-isotropic.

2 If b1(M) is even, then R1(M) = H1(M,C).

On the other hand, it follows from [Dimca–Papadima–S.] that:

Proposition

Let M be a compact Kähler manifold with b1(M) 6= 0. If
R1(M) = H1(M,C), then H1(M,C) is 1-isotropic.

But G = π1(M), with M Kähler⇒ b1(G) even.
Thus, if G is both a 3-mfd group and a Kähler group⇒ b1(G) = 0.
Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan’s
property (T), as well as Perelman (2003)⇒ G finite subgroup of O(4).
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Applications 3-manifolds

Question
Which 3-manifold groups are quasi-Kähler groups?

Theorem (Dimca–Papadima–S.)

Let G be the fundamental group of a closed, orientable 3-manifold.
Assume G is 1-formal. Then the following are equivalent:

1 m(G) ∼= m(π1(X )), for some quasi-Kähler manifold X.

2 m(G) ∼= m(π1(M)), where M is either S3, #nS1 × S2, or S1 × Σg .
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Applications 3-manifolds

BNS invariant and Thurston norm

Let M be a compact, connected 3-manifold, with G = π1(M).

Theorem (Bieri–Neumann–Strebel 1987)

Σ1(G) =
⋃

F fibered face of Thurston norm unit ball R+ ·
◦
F.

Σ1(G) = −Σ1(G).
M fibers over S1 ⇐⇒ Σ1(G) 6= ∅.

Using (1) upper bound Σ1(G) ⊆ R1(G,R){ for 1-formal groups, and
(2) description of R1(M3) from above, we get:

Corollary (Papadima–S.)
Let M be a closed, orientable 3-manifold. If b1(M) is even, and
G = π1(M) is 1-formal, then M does not fiber over the circle.
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Applications 3-manifolds
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