Geometry and topology of cohomology jumping loci

Alex Suciu

Northeastern University

Colloquium University at Albany December 4, 2009

Characteristic varieties and Σ-invariants

- Characteristic varieties
- Tangent cones
- Bieri-Neumann-Strebel-Renz invariants
- Exponential tangent cone upper bound

Resonance varieties and the tangent cone theorem

- Resonance varieties
- Formality
- Tangent cone theorem
- Resonance upper bound

Applications

- Kähler groups
- Toric complexes and right-angled Artin groups
- Three-dimensional manifolds

Characteristic varieties

- X connected CW-complex with finite k-skeleton ($k \ge 1$)
- $G = \pi_1(X, x_0)$: a finitely generated group
- Hom(G, C[×]) character variety

Definition

For $0 \le i \le k$ and d > 0, set

$$\mathcal{V}^i_{d}(X) = \{
ho \in \operatorname{Hom}(G,\mathbb{C}^{ imes}) \mid \dim_{\mathbb{C}} H_i(X,\mathbb{C}_{
ho}) \geq d\},$$

where \mathbb{C}_{ρ} is the rank 1 local system defined by ρ , i.e, \mathbb{C} viewed as a module over $\mathbb{Z}G$, via $g \cdot x = \rho(g)x$, and $H_i(X, \mathbb{C}_{\rho}) = H_i(C_*(\widetilde{X}) \otimes_{\mathbb{Z}G} \mathbb{C}_{\rho})$.

• For each *i*, get stratification $\text{Hom}(G, \mathbb{C}^{\times}) \supseteq \mathcal{V}_1^i \supseteq \mathcal{V}_2^i \supseteq \cdots$

• Note: at
$$\rho = 1$$
, $H_i(X, \mathbb{C}_{\rho}) = H_i(X, \mathbb{C})$. Thus,
 $1 \in \mathcal{V}_1^i(X) \iff b_i(X) \neq 0$

• Note: $\mathcal{V}_d(X) = \mathcal{V}_d^1(X)$ depends only on *G*. Write it as $\mathcal{V}_d(G)$.

Example (Circle)

We have $S^1 = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{Z}\mathbb{Z} = \mathbb{Z}[t^{\pm 1}]$. Then:

$$\mathcal{C}_*(\widetilde{S^1}): 0 \longrightarrow \mathbb{Z}[t^{\pm 1}] \xrightarrow{t-1} \mathbb{Z}[t^{\pm 1}] \longrightarrow 0$$

For $ho \in \operatorname{Hom}(\mathbb{Z}, \mathcal{C}^{ imes}) = \mathbb{C}^{ imes}$, get

$$C_*(\widetilde{S^1}) \otimes_{\mathbb{ZZ}} \mathbb{C}_{\rho} : 0 \longrightarrow \mathbb{C} \xrightarrow{\rho-1} \mathbb{C} \longrightarrow 0$$

which is exact, except for $\rho = 1$, when $H_0(S^1, \mathbb{C}) = H_1(S^1, \mathbb{C}) = \mathbb{C}$. Hence:

$$\mathcal{V}_1^0(\mathcal{S}^1) = \mathcal{V}_1^1(\mathcal{S}^1) = \{1\}$$

 $\mathcal{V}_d^i(\mathcal{S}^1) = \emptyset$, otherwise.

Characteristic varieties

Example (Torus)

Identify
$$\pi_1(T^n) = \mathbb{Z}^n$$
, and $\operatorname{Hom}(\mathbb{Z}^n, \mathbb{C}^{\times}) = (\mathbb{C}^{\times})^n$. Then:
 $\mathcal{V}_d^i(T^n) = \begin{cases} \{1\} & \text{if } d \leq \binom{n}{i}, \\ \emptyset & \text{otherwise.} \end{cases}$

Example (Wedge of circles)

Identify $\pi_1(\bigvee^n S^1) = F_n$, and $\text{Hom}(F_n, \mathbb{C}^{\times}) = (\mathbb{C}^{\times})^n$. Then:

$$\mathcal{V}_d^1(\bigvee^n \mathcal{S}^1) = \begin{cases} (\mathbb{C}^\times)^n & \text{if } d < n, \\ \{1\} & \text{if } d = n, \\ \emptyset & \text{if } d > n. \end{cases}$$

Example (Orientable surface of genus q > 1)

$$\mathcal{V}^1_d(\Sigma_g) = \begin{cases} (\mathbb{C}^\times)^{2g} & \text{if } d < 2g-1, \\ \{1\} & \text{if } d = 2g-1, 2g, \\ \emptyset & \text{if } d > 2g. \end{cases}$$

Alexander polynomial

- $G = \pi_1(X, x_0)$
- $X^{ab} \xrightarrow{p} X$ maximal torsion-free abelian cover, defined by $G \xrightarrow{ab} H = H_1(G)/\text{tors} \cong \mathbb{Z}^n$
- $A_G = H_1(X^{ab}, p^{-1}(x_0); \mathbb{Z})$ Alex. module $/ \mathbb{Z}H \cong \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$ • $\Delta_G = \operatorname{gcd}(E_1(A_G))$

Proposition (Dimca-Papadima-S.)

$$\check{\mathcal{V}}_1(G)\setminus\{1\}=V(\Delta_G)\setminus\{1\},$$

where

- $\check{\mathcal{V}}_1(G) = union \text{ of codim. 1 components of } \mathcal{V}_1(G) \cap Hom(G, \mathbb{C}^{\times})^0$
- $V(\Delta_G) = hypersurface$ in $Hom(G, \mathbb{C}^{\times})^0$ defined by Δ_G .

Example

Let K be a non-trivial knot, $G = \pi_1(S^3 \setminus K)$. Then: $\mathcal{V}_1(G) = \{z \in \mathbb{C} \mid \Delta_G(z) = 0\} \cup \{1\}.$

Alex Suciu (Northeastern University)

Tangent cones and exponential tangent cones

The homomorphism $\mathbb{C} \to \mathbb{C}^{\times}$, $z \mapsto e^z$ induces

```
exp: Hom(G, \mathbb{C}) \rightarrow Hom(G, \mathbb{C}^{\times}), exp(0) = 1
```

Let W = V(I) be a Zariski closed subset in Hom (G, \mathbb{C}^{\times}) .

Definition

• The *tangent cone* at 1 to W:

```
TC_1(W) = V(in(I))
```

• The exponential tangent cone at 1 to W:

 $au_1(W) = \{z \in \operatorname{Hom}(G, \mathbb{C}) \mid \exp(tz) \in W, \ \forall t \in \mathbb{C}\}$

Both types of tangent cones

- are homogeneous subvarieties of Hom(G, C)
- are non-empty iff $1 \in W$
- depend only on the analytic germ of W at 1
- commute with finite unions and arbitrary intersections

Moreover,

1

•
$$\tau_1(W) \subseteq TC_1(W)$$

- = if all irred components of W are subtori
- \neq in general
- $\tau_1(W)$ is a finite union of rationally defined subspaces

Bieri–Neumann–Strebel–Renz invariants

G finitely generated group $\rightsquigarrow C(G)$ Cayley graph. $\chi \colon G \to \mathbb{R}$ homomorphism $\rightsquigarrow C_{\chi}(G)$ induced subgraph on vertex set $G_{\chi} = \{g \in G \mid \chi(g) \ge 0\}.$

Definition

$$\Sigma^{1}(G) = \{\chi \in \mathsf{Hom}(G, \mathbb{R}) \setminus \{0\} \mid \mathcal{C}_{\chi}(G) \text{ is connected} \}$$

An open, conical subset of $Hom(G, \mathbb{R}) = H^1(G, \mathbb{R})$, independent of choice of generating set for *G*.

Definition

 $\Sigma^k(G,\mathbb{Z}) = \{\chi \in \mathsf{Hom}(G,\mathbb{R}) \setminus \{0\} \mid \mathsf{the monoid} \; G_\chi \; \mathsf{is of type} \; \mathsf{FP}_k \}$

Here, *G* is of type FP_k if there is a projective $\mathbb{Z}G$ -resolution $P_{\bullet} \to \mathbb{Z}$, with P_i finitely generated for all $i \leq k$.

 The BNSR invariants Σ^q(G, Z) form a descending chain of open subsets of Hom(G, R) \ {0}.

•
$$\Sigma^k(G,\mathbb{Z}) \neq \emptyset \implies G$$
 is of type FP_k .

- $\Sigma^1(G,\mathbb{Z}) = \Sigma^1(G).$
- The Σ-invariants control the finiteness properties of normal subgroups N ⊲ G with G/N is abelian:

$$N$$
 is of type $\mathsf{FP}_k \Longleftrightarrow \mathcal{S}(G, N) \subseteq \Sigma^k(G, \mathbb{Z})$

where $S(G, N) = \{\chi \in Hom(G, \mathbb{R}) \setminus \{0\} \mid \chi(N) = 0\}.$

• In particular:

$$\operatorname{ker}(\chi\colon \boldsymbol{G}\twoheadrightarrow\mathbb{Z}) \text{ is f.g.} \Longleftrightarrow \{\pm\chi\}\subseteq \Sigma^1(\boldsymbol{G})$$

Let *X* be a connected CW-complex with finite 1-skeleton, $G = \pi_1(X)$.

Definition

The *Novikov-Sikorav* completion of $\mathbb{Z}G$:

$$\widehat{\mathbb{Z}G}_{\chi} = \left\{ \lambda \in \mathbb{Z}^{\mathcal{G}} \mid \{ oldsymbol{g} \in \mathsf{supp} \ \lambda \mid \chi(oldsymbol{g}) < oldsymbol{c} \} ext{ is finite, } orall oldsymbol{c} \in \mathbb{R}
ight\}$$

 $\widehat{\mathbb{Z}G}_{\chi}$ is a ring, contains $\mathbb{Z}G$ as a subring $\implies \widehat{\mathbb{Z}G}_{\chi}$ is a $\mathbb{Z}G$ -module.

Definition

 $\Sigma^q(X,\mathbb{Z}) = \{\chi \in \mathsf{Hom}(G,\mathbb{R}) \setminus \{0\} \mid H_i(X,\widehat{\mathbb{Z}G}_{-\chi}) = 0, \ \forall i \leq q\}$

Bieri: *G* of type $FP_k \implies \Sigma^q(G, \mathbb{Z}) = \Sigma^q(K(G, 1), \mathbb{Z}), \forall q \leq k$.

Exponential tangent cone upper bound

Theorem (Papadima-S.)

If X has finite k-skeleton, then, for every $q \le k$,

$$\Sigma^{q}(X,\mathbb{Z}) \subseteq \Big(au_{1}^{\mathbb{R}}ig(\bigcup_{i\leq q}\mathcal{V}_{1}^{i}(X)ig)\Big)^{\mathfrak{c}}.$$
 (*)

Thus: Each Σ -invariant is contained in the complement of a union of rationally defined subspaces. Bound is sharp:

Example

Let G be a finitely generated nilpotent group. Then

$$\Sigma^q(G,\mathbb{Z}) = \operatorname{Hom}(G,\mathbb{R})\setminus\{0\}, \quad V^q_1(G) = \{1\}, \quad orall q$$

and so (*) holds as an equality.

Resonance varieties

Let X be a connected CW-complex with finite k-skeleton ($k \ge 1$). Let $A = H^*(X, \mathbb{C})$. Then: $a \in A^1 \Rightarrow a^2 = 0$. Thus, get cochain complex

$$(A, \cdot a): A^{\circ} \longrightarrow A^{1} \longrightarrow A^{2} \longrightarrow$$

Definition

The resonance varieties of X are the algebraic sets

$$\mathcal{R}^i_{d}(X) = \{ a \in \mathcal{A}^1 \mid \dim_{\Bbbk} \mathcal{H}^i(\mathcal{A}, a) \geq d \},$$

defined for all integers $0 \le i \le k$ and d > 0.

• \mathcal{R}^i_d are homogeneous subvarieties of $A^1 = H^1(X, \mathbb{C})$

•
$$\mathcal{R}_1^i \supseteq \mathcal{R}_2^i \supseteq \cdots \supseteq \mathcal{R}_{b_i+1}^i = \emptyset$$
, where $b_i = b_i(X)$.

• $\mathcal{R}_d(X) = \mathcal{R}^1_d(X)$ depends only on $G = \pi_1(X)$. Write as $\mathcal{R}_d(G)$.

Equivalent definition:

$$\mathcal{R}_d(X) = \left\{ a \in H^1(X, \mathbb{C}) \mid \exists \text{ subspace } W \subset H^1(X, \mathbb{C}) \text{ such that } \\ \dim W = d + 1 \text{ and } a \cup W = 0 \right\}$$

In particular, $0 \neq a \in H^1(X, \mathbb{C})$ belongs to $\mathcal{R}_1(X)$ iff there is $b \in H^1(X)$ not proportional to a, such that $a \cup b = 0$ in $H^2(X)$.

Example

•
$$\mathcal{R}_1(T^n) = \{0\}$$
, for all $n > 0$.

•
$$\mathcal{R}_1(\bigvee^n S^1) = \mathbb{C}^n$$
, for all $n > 1$.

•
$$\mathcal{R}_1(\Sigma_g) = \mathbb{C}^{2g}$$
, for all $g > 1$.

Theorem (Libgober 2002)

$$TC_1(\mathcal{V}_d^i(X)) \subseteq \mathcal{R}_d^i(X)$$

Equality does not hold in general (Matei-S. 2002)

Alex Suciu (Northeastern University)

Formality

Definition

- A group *G* is 1-*formal* if its Malcev Lie algebra, $\mathfrak{m}_G = \operatorname{Prim}(\widehat{\mathbb{Q}G})$, is quadratic.
- A space X is formal if its minimal model is quasi-isomorphic to (H*(X, Q), 0).
 - X formal $\implies \pi_1(X)$ is 1-formal.
 - X_1, X_2 formal $\implies X_1 \times X_2$ and $X_1 \vee X_2$ are formal
 - G_1 , G_2 1-formal \implies $G_1 \times G_2$ and $G_1 * G_2$ are 1-formal
 - M_1 , M_2 formal, closed *n*-manifolds $\implies M_1 \# M_2$ formal

Tangent cone theorem

Theorem (Dimca-Papadima-S.)

If G is 1-formal, then exp: $(\mathcal{R}_d(G), 0) \xrightarrow{\simeq} (\mathcal{V}_d(G, \mathbb{C}), 1)$. Hence

 $\tau_1(\mathcal{V}_d(G)) = \mathit{TC}_1(\mathcal{V}_d(G)) = \mathcal{R}_d(G)$

In particular, $\mathcal{R}_d(G)$ is a union of rationally defined linear subspaces in $H^1(G, \mathbb{C}) = \text{Hom}(G, \mathbb{C}).$

Example

Let $G = \langle x_1, x_2, x_3, x_4 \mid [x_1, x_2], [x_1, x_4][x_2^{-2}, x_3], [x_1^{-1}, x_3][x_2, x_4] \rangle$. Then $\mathcal{R}_1(G) = \{ x \in \mathbb{C}^4 \mid x_1^2 - 2x_2^2 = 0 \}$

splits into subspaces over \mathbb{R} but not over \mathbb{Q} . Thus, *G* is *not* 1-formal.

Example

X = F(Σ_g, n): the configuration space of *n* labeled points of a Riemann surface of genus *g* (a smooth, quasi-projective variety).
 π₁(X) = P_{g,n}: the pure braid group on *n* strings on Σ_g.

Using computation of $H^*(F(\Sigma_g, n), \mathbb{C})$ by Totaro (1996), get

$$\mathcal{R}_1(\mathcal{P}_{1,n}) = \left\{ (x, y) \in \mathbb{C}^n \times \mathbb{C}^n \middle| \begin{array}{l} \sum_{i=1}^n x_i = \sum_{i=1}^n y_i = 0, \\ x_i y_j - x_j y_i = 0, \end{array} \right\}$$

For $n \ge 3$, this is an irreducible, non-linear variety (a rational normal scroll). Hence, $P_{1,n}$ is not 1-formal.

Resonance upper bound

Corollary

Suppose exp:
$$(\mathcal{R}_1^i(X), 0) \xrightarrow{\simeq} (\mathcal{V}_1^i(X), 1)$$
, for $i \leq q$. Then:

$$\Sigma^q(X,\mathbb{Z})\subseteq \Big(\bigcup_{i\leq q}\mathcal{R}^i_1(X,\mathbb{R})\Big)^{\complement}.$$

Corollary

Suppose G is a 1-formal group. Then $\Sigma^1(G) \subseteq \mathcal{R}_1(G, \mathbb{R})^{c}$. In particular, if $\mathcal{R}_1(G, \mathbb{R}) = H^1(G, \mathbb{R})$, then $\Sigma^1(G) = \emptyset$.

Example

The above inclusion may be strict: Let $G = \langle a, b \mid aba^{-1} = b^2 \rangle$. Then *G* is 1-formal, $\Sigma^1(G) = (-\infty, 0)$, yet $\mathcal{R}_1(G, \mathbb{R}) = \{0\}$.

Kähler manifolds and Kähler groups

Definition

A compact, connected, complex manifold *M* is called a *Kähler manifold* if *M* admits a Hermitian metric *h* for which the imaginary part $\omega = \Im(h)$ is a closed 2-form.

Examples: Riemann surfaces, \mathbb{CP}^n , and, more generally, smooth, complex projective varieties.

Definition

A group *G* is a *Kähler group* if $G = \pi_1(M)$, for some compact Kähler manifold *M*.

G is *projective* if M is actually a smooth projective variety.

- *G* finite \Rightarrow *G* is a projective group (Serre 1958).
- G_1, G_2 Kähler groups $\Rightarrow G_1 \times G_2$ is a Kähler group
- *G* Kähler group, H < G finite-index subgroup \Rightarrow *H* is a Kähler gp

Problem (J.-P. Serre 1958)

Which finitely presented groups are Kähler (or projective) groups?

The Kähler condition puts strong restrictions on *M*:

- **1** $H^*(M,\mathbb{Z})$ admits a Hodge structure
- Hence, the odd Betti numbers of M are even
- 3 *M* is formal (Deligne–Griffiths–Morgan–Sullivan 1975)

The Kähler condition also puts strong restrictions on $G = \pi_1(M)$:

- \bigcirc $b_1(G)$ is even
- 2 G is 1-formal
- G cannot split non-trivially as a free product (Gromov 1989)

Quasi-Kähler manifolds

Definition

A manifold X is called *quasi-Kähler* if $X = \overline{X} \setminus D$, where \overline{X} is Kähler and D is a divisor with normal crossings.

- Smooth quasi-projective varieties (e.g., complements of hypersurfaces in CPⁿ) are quasi-Kähler manifolds.
- A finitely-presented group G is called a *quasi-Kähler group* if there a quasi-Kähler manifold X with $G = \pi_1(X)$.
- $X = \mathbb{CP}^n \setminus \{\text{hyperplane arrangement}\} \Rightarrow X \text{ is formal}$

(Brieskorn 1973)

• X quasi-projective, $W_1(H^1(X,\mathbb{C})) = 0 \Rightarrow \pi_1(X)$ is 1-formal

(Morgan 1978)

• $X = \mathbb{CP}^n \setminus \{ \text{hypersurface} \} \Rightarrow \pi_1(X) \text{ is 1-formal}$

(Kohno 1983)

Theorem (Arapura 1997)

Let G be a quasi-Kähler group. Then

$$\mathcal{V}_1(G) = \bigcup_{\alpha} \rho_{\alpha} T_{\alpha}$$

where T_{α} is an algebraic subtorus of Hom (G, \mathbb{C}^{\times}) and ρ_{α} is a finite-order character.

Theorem (Dimca-Papadima-S.)

Let G be a quasi-Kähler group, and Δ_G its Alexander polynomial.

- If $b_1(G) \neq 2$, then the Newton polytope of Δ_G is a line segment.
- If G is actually a Kähler group, then $\Delta_G \doteq$ const.

Resonance varieties of quasi-Kähler manifolds

Theorem (Dimca-Papadima-S.)

Let X be a quasi-Kähler manifold, and $G = \pi_1(X)$. Let $\{L_\alpha\}_\alpha$ be the non-zero irred components of $\mathcal{R}_1(G)$. If G is 1-formal, then

- Each L_{α} is a linear subspace of $H^1(G, \mathbb{C})$.
- 2 Each *L*_α is *p*-isotropic (i.e., restriction of ∪_{*G*} to *L*_α has rank *p*), with dim *L*_α ≥ 2*p* + 2, for some *p* = *p*(α) ∈ {0, 1}.

$$If \alpha \neq \beta, then L_{\alpha} \cap L_{\beta} = \{0\}.$$

Furthermore,

• If X is compact, then G is 1-formal, and each L_{α} is 1-isotropic.

Solution If
$$W_1(H^1(X, \mathbb{C})) = 0$$
, then G is 1-formal, and each L_α is 0-isotropic.

Σ -invariants

Let X be a quasi-Kähler manifold, $G = \pi_1(X)$.

Theorem (Papadima-S.)

- $\ \ \, {\bf D} \ \, \Sigma^1(G)\subseteq \mathit{TC}^{\mathbb R}_1(\mathcal V^1_1(G))^{\complement}.$
- ② If X is Kähler, or $W_1(H^1(X, \mathbb{C})) = 0$, then $\mathcal{R}_1(G, \mathbb{R})$ is a finite union of rationally defined linear subspaces, and $\Sigma^1(G) \subseteq \mathcal{R}_1(G, \mathbb{R})^{c}$.

Example

Assumption from (2) is necessary. E.g., let *X* be the complex Heisenberg manifold: bundle $\mathbb{C}^{\times} \to X \to (\mathbb{C}^{\times})^2$ with e = 1. Then:

- X is a smooth quasi-projective variety;
- $G = \pi_1(X)$ is nilpotent (and not 1-formal);
- $\textcircled{0} \ \Sigma^1(G) = \mathbb{R}^2 \setminus \{0\} \text{ and } \mathcal{R}_1(G,\mathbb{R}) = \mathbb{R}^2.$

Thus, $\Sigma^1(G) \not\subseteq \mathcal{R}_1(G,\mathbb{R})^{c}$.

Toric complexes and right-angled Artin groups

- L simplicial complex on *n* vertices → toric complex T_L (subcomplex of Tⁿ obtained by deleting the cells corresponding to the missing simplices of L).
- $\pi_1(T_L)$ is the *right-angled Artin group* associated to graph $\Gamma = L^{(1)}$:

 $G_{\Gamma} = \langle v \in V(\Gamma) \mid vw = wv \text{ if } \{v, w\} \in E(\Gamma) \rangle.$

- $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the *flag complex* of Γ .
- *H*^{*}(*T_L*, ℤ) is the *exterior Stanley-Reisner ring* of *L*, with generators the duals *v*^{*}, and relations the monomials corresponding to the missing simplices of *L*.
- T_L is formal, and so G_{Γ} is 1-formal.

Example

- $\Gamma = \overline{K}_n \Rightarrow G_{\Gamma} = F_n$
- $\Gamma = K_n \Rightarrow G_{\Gamma} = \mathbb{Z}^n$

•
$$\Gamma = \Gamma' \coprod \Gamma'' \Rightarrow G_{\Gamma} = G_{\Gamma'} * G_{\Gamma''}$$

• $\Gamma = \Gamma' * \Gamma'' \Rightarrow G_{\Gamma} = G_{\Gamma'} \times G_{\Gamma''}$

Identify $H^1(T_L, \mathbb{C}) = \mathbb{C}^V$, the \mathbb{C} -vector space with basis $\{v \mid v \in V\}$.

Theorem (Papadima–S.)

$$\mathcal{R}^{i}_{d}(T_{L}) = \bigcup_{\substack{\mathsf{W} \subset \mathsf{V} \\ \sum_{\sigma \in L_{\mathsf{V} \setminus \mathsf{W}}} \mathsf{dim}_{\mathbb{C}} \widetilde{H}_{i-1-|\sigma|}(\mathsf{lk}_{L_{\mathsf{W}}}(\sigma), \mathbb{C}) \geq d} \mathbb{C}^{\mathsf{W}},$$

where L_W is the subcomplex induced by L on W, and $lk_K(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular:

$$\mathcal{R}_1(G_{\Gamma}) = igcup_{W \subseteq V} \mathbb{C}^W.$$

Similar formula holds for $\mathcal{V}_d^i(\mathcal{T}_L)$, with \mathbb{C}^W replaced by $(\mathbb{C}^{\times})^W$. Hence:

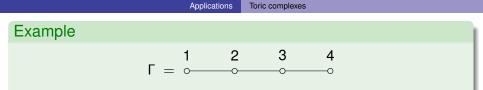
$$\exp\colon (\mathcal{R}^i_d(T_L), 0) \xrightarrow{\simeq} (\mathcal{V}^i_d(T_L), 1).$$

Using (1) resonance upper bound, and (2) computation of $\Sigma^k(G_{\Gamma}, \mathbb{Z})$ by Meier, Meinert, VanWyk (1998), we get:

Corollary (Papadima-S.)

$$\Sigma^{k}(T_{L},\mathbb{Z})\subseteq ig(igcup_{i\leq k}\mathcal{R}_{1}^{i}(T_{L},\mathbb{R})ig)^{\complement}$$
 $\Sigma^{k}(G_{\Gamma},\mathbb{Z})=ig(igcup_{i\leq k}\mathcal{R}_{1}^{i}(T_{\Delta_{\Gamma}},\mathbb{R})ig)^{\complement}$

Alex Suciu (Northeastern University)



Maximal disconnected subgraphs: $\Gamma_{\{134\}}$ and $\Gamma_{\{124\}}$. Thus:

$$\mathcal{R}_1(G_{\Gamma}) = \mathbb{C}^{\{134\}} \cup \mathbb{C}^{\{124\}}.$$

Note that: $\mathbb{C}^{\{134\}} \cap \mathbb{C}^{\{124\}} = \mathbb{C}^{\{14\}} \neq \{0\}$ Since G_{Γ} is 1-formal $\Rightarrow G_{\Gamma}$ is not a quasi-Kähler group.

Theorem (Dimca-Papadima-S.)

The following are equivalent:

$$G_{\Gamma} = F_{n_1} \times \cdots \times F_{n_r}$$

1 G_{Γ} is a Kähler group

$$\bigcirc \Gamma = K_{2r}$$

$$\bigcirc G_{\Gamma} = \mathbb{Z}^{2r}$$

Bestvina–Brady groups $N_{\Gamma} = \ker(\nu : G_{\Gamma} \twoheadrightarrow \mathbb{Z})$, where $\nu(\nu) = 1$, for all $\nu \in V(\Gamma)$.

Theorem (Dimca-Papadima-S.)

The following are equivalent:

- N_Γ is a quasi-Kähler group
- **2** Γ is either a tree, or $\Gamma = K_{n_1,...,n_r}$, with some $n_i = 1$, or all $n_i \ge 2$ and $r \ge 3$.

Example (answers a question of J. Kollár)

 $\Gamma = K_{2,2,2} \rightsquigarrow G_{\Gamma} = F_2 \times F_2 \times F_2 \rightsquigarrow N_{\Gamma} = \text{the Stallings group}$

 N_{Γ} is finitely presented, but rank $H_3(N_{\Gamma}, \mathbb{Z}) = \infty$, so N_{Γ} not FP₃.

Also, $N_{\Gamma} = \pi_1(\mathbb{C}^2 \setminus \{\text{an arrangement of 5 lines}\}).$

Thus, N_{Γ} is a quasi-projective group which is not commensurable (even up to finite kernels) to any group π having a finite $K(\pi, 1)$.

Alex Suciu (Northeastern University)

3-manifolds

Question (Donaldson–Goldman 1989, Reznikov 1993)

Which 3-manifold groups are Kähler groups?

Reznikov (2002) and Hernández-Lamoneda (2001) gave partial solutions.

Theorem (Dimca–S.)

Let G be the fundamental group of a closed 3-manifold. Then G is a Kähler group \iff G is a finite subgroup of O(4), acting freely on S³.

Idea of proof: compare the resonance varieties of (orientable) 3-manifolds to those of Kähler manifolds.

3-manifolds

Proposition

Let M be a closed, orientable 3-manifold, Then:

- $H^1(M, \mathbb{C})$ is not 1-isotropic.
- 2 If $b_1(M)$ is even, then $\mathcal{R}_1(M) = H^1(M, \mathbb{C})$.

On the other hand, it follows from [Dimca–Papadima–S.] that:

Proposition

Let M be a compact Kähler manifold with $b_1(M) \neq 0$. If $\mathcal{R}_1(M) = H^1(M, \mathbb{C})$, then $H^1(M, \mathbb{C})$ is 1-isotropic.

But $G = \pi_1(M)$, with M Kähler $\Rightarrow b_1(G)$ even. Thus, if G is both a 3-mfd group and a Kähler group $\Rightarrow b_1(G) = 0$. Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan's property (T), as well as Perelman (2003) \Rightarrow G finite subgroup of O(4).

Question

Which 3-manifold groups are quasi-Kähler groups?

Theorem (Dimca-Papadima-S.)

Let G be the fundamental group of a closed, orientable 3-manifold. Assume G is 1-formal. Then the following are equivalent:

- $\mathfrak{O} \mathfrak{m}(G) \cong \mathfrak{m}(\pi_1(X))$, for some quasi-Kähler manifold X.
- 2 $\mathfrak{m}(G) \cong \mathfrak{m}(\pi_1(M))$, where M is either S^3 , $\#^n S^1 \times S^2$, or $S^1 \times \Sigma_g$.

BNS invariant and Thurston norm

Let *M* be a compact, connected 3-manifold, with $G = \pi_1(M)$.

Theorem (Bieri-Neumann-Strebel 1987)

Σ¹(G) = ∪_F fibered face of Thurston norm unit ball ℝ₊ · F̃.
Σ¹(G) = −Σ¹(G).

• *M* fibers over
$$S^1 \iff \Sigma^1(G) \neq \emptyset$$
.

Using (1) upper bound $\Sigma^1(G) \subseteq \mathcal{R}_1(G, \mathbb{R})^{c}$ for 1-formal groups, and (2) description of $\mathcal{R}_1(M^3)$ from above, we get:

Corollary (Papadima–S.)

Let *M* be a closed, orientable 3-manifold. If $b_1(M)$ is even, and $G = \pi_1(M)$ is 1-formal, then *M* does not fiber over the circle.

A. Dimca, S. Papadima, A. Suciu, *Quasi-Kähler Bestvina-Brady groups*, J. Algebraic Geom. **17** (2008), no. 1, 185–197.

____, *Alexander polynomials: Essential variables and multiplicities*, Int. Math. Res. Notices **2008**, no. 3, Art. ID rnm119, 36 pp.

____, *Topology and geometry of cohomology jump loci*, Duke Math. Journal **148** (2009), no. 3, 405–457.

- A. Dimca, A. Suciu, *Which* 3*-manifold groups are Kähler groups?*, J. European Math. Soc. **11** (2009), no. 3, 521–528.
- S. Papadima, A. Suciu, *Toric complexes and Artin kernels*, Advances in Math. **220** (2009), no. 2, 441–477.
 - _____, *Bieri-Neumann-Strebel-Renz invariants and homology jumping loci*, arxiv:0812.2660, to appear in Proc. London Math. Soc. (2010)
- A. Suciu, Fundamental groups, Alexander invariants, and cohomology jumping loci, arxiv:0910.1559.